@article{AIHPB_2007__43_1_47_0, author = {Gantert, Nina and K\"onig, Wolfgang and Shi, Zhan}, title = {Annealed deviations of random walk in random scenery}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {43}, year = {2007}, pages = {47-76}, doi = {10.1016/j.anihpb.2005.12.002}, mrnumber = {2288269}, zbl = {1119.60083}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2007__43_1_47_0} }
Gantert, Nina; König, Wolfgang; Shi, Zhan. Annealed deviations of random walk in random scenery. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) pp. 47-76. doi : 10.1016/j.anihpb.2005.12.002. http://gdmltest.u-ga.fr/item/AIHPB_2007__43_1_47_0/
[1] Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields 126 (2003) 497-527. | MR 2001196 | Zbl 1043.60018
, ,[2] A. Asselah, F. Castell, A note on random walk in random scenery, preprint, 2005.
[3] A. Asselah, F. Castell, Self-intersection times for random walk, and random walk in random scenery in dimension , preprint, 2005.
[4] Décroissance exponentielle du noyau de la chaleur sur la diagonale. II, Probab. Theory Related Fields 90 (3) (1991) 377-402. | MR 1133372 | Zbl 0734.60027
, ,[5] Regular Variation, Cambridge University Press, Cambridge, 1987. | MR 898871 | Zbl 0617.26001
, , ,[6] A central limit theorem for two-dimensional random walks in random sceneries, Ann. Probab. 17 (1989) 108-115. | MR 972774 | Zbl 0679.60028
,[7] Limit theorems for sums of independent random variables defined on a transient random walk, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244. | MR 535455 | Zbl 0417.60027
,[8] A limit theorem for sums of independent random variables defined on a recurrent random walk, Dokl. Akad. Nauk SSSR 246 (4) (1979) 786-787. | MR 543530 | Zbl 0423.60025
,[9] The diffusive phase of a model of self-interacting walks, Probab. Theory Related Fields 103 (1995) 285-315. | MR 1358079 | Zbl 0832.60096
, ,[10] Moderate deviations for diffusions in a random Gaussian shear flow drift, Ann. Inst. H. Poincaré Probab. Statist. 40 (3) (2004) 337-366. | Numdam | MR 2060457 | Zbl 1042.60009
,[11] Annealed large deviations for diffusions in a random shear flow drift, Stochastic Process Appl. 94 (2001) 171-197. | MR 1840830 | Zbl 1051.60028
, ,[12] Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks, Ann. Probab. 32 (4) (2004). | MR 2094445 | Zbl 1067.60071
,[13] Large and moderate deviations for intersection local times, Probab. Theory Related Fields 128 (2004) 213-254. | MR 2031226 | Zbl 1038.60074
, ,[14] Large Deviations Techniques and Applications, second ed., Springer, Berlin, 1998. | MR 1619036 | Zbl 0896.60013
, ,[15] On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32 (1979) 721-747. | MR 539157 | Zbl 0418.60074
, ,[16] Deviations of a random walk in a random scenery with stretched exponential tails, Stochastic Process. Appl. 116 (3) (2006) 480-492. | MR 2199560 | Zbl 1100.60056
, , ,[17] On large deviations from the invariant measure, Theory Probab. Appl. 22 (1) (1977) 24-39. | MR 471040 | Zbl 0375.60033
,[18] Some Random Series of Functions, second ed., Cambridge University Press, Cambridge, 1985. | MR 833073 | Zbl 0571.60002
,[19] A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Geb. 50 (1979) 5-25. | MR 550121 | Zbl 0396.60037
, ,[20] Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab. 30 (2002) 1605-1656. | MR 1944002 | Zbl 1032.60073
, ,[21] Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001. | MR 1817225 | Zbl 0966.26002
, ,[22] Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA 78 (11) (1981) 6592-6595. | MR 634934 | Zbl 0474.35047
, ,[23] Sums of Independent Random Variables, Springer, Berlin, 1975. | MR 388499 | Zbl 0322.60042
,[24] Principles of Random Walk, second ed., Springer, Berlin, 1976. | MR 388547 | Zbl 0359.60003
,[25] Green’s functions for random walks on , Proc. London Math. Soc. 77 (3) (1998) 215-240. | MR 1625467 | Zbl 0893.60045
,[26] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576. | MR 691044 | Zbl 0527.35023
,