@article{AIHPB_2006__42_6_727_0, author = {Aaronson, Jon and Nakada, H. and Sarig, O.}, title = {Exchangeable measures for subshifts}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {42}, year = {2006}, pages = {727-751}, doi = {10.1016/j.anihpb.2005.10.002}, mrnumber = {2269236}, zbl = {1110.60025}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2006__42_6_727_0} }
Aaronson, J.; Nakada, H.; Sarig, O. Exchangeable measures for subshifts. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) pp. 727-751. doi : 10.1016/j.anihpb.2005.10.002. http://gdmltest.u-ga.fr/item/AIHPB_2006__42_6_727_0/
[1] Group extensions of Gibbs-Markov maps, Probab. Theory Related Fields 123 (1) (2002) 38-40. | MR 1906436 | Zbl 1028.37003
, ,[2] Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (2) (1993) 495-548. | MR 1107025 | Zbl 0789.28010
, , ,[3] Aperiodicity of cocycles and conditional local limit theorems, Stoch. Dyn. 4 (1) (2004) 31-62. | MR 2069366 | Zbl 1077.37010
, , , ,[4] Invariant measures and asymptotics for some skew products, Israel J. Math. 128 (2002) 93-134. | MR 1910377 | Zbl 1006.28013
, , , ,[5] Corrections to: Invariant measures and asymptotics for some skew products, Israel J. Math. 138 (2003) 377-379. | MR 2031964 | Zbl 1095.28508
, , , ,[6] β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (2) (1989) 131-141. | Zbl 0682.68081
,[7] Markov Chains with Stationary Transition Probabilities, Springer, Heidelberg, 1960. | MR 116388 | Zbl 0146.38401
,[8] De Finetti's theorem for Markov chains, Ann. Probab. 8 (8) (1980) 115-130. | MR 556418 | Zbl 0426.60064
, ,[9] Transformation groups and -algebras, Ann. of Math. (2) 81 (1965) 38-55. | Zbl 0152.33203
,[10] Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (2) (1977) 289-324. | MR 578656 | Zbl 0369.22009
, ,[11] Abelian Groups, Internat. Ser. Monogr. Pure Appl. Math., Pergamon Press, New York, 1960. | MR 111783
,[12] A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959) 809-814, (in Russian). | MR 109817 | Zbl 0092.27702
,[13] Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961) 124-138. | MR 136681 | Zbl 0119.10802
,[14] Ergodic decomposition of quasi-invariant probability measures, part 2, Colloq. Math. 84/85 (2000) 495-514. | MR 1784210 | Zbl 0972.37003
, ,[15] On the σ-algebra of symmetric events for a countable Markov chain, Theory Probab. Appl. 24 (1979) 199-204. | Zbl 0432.60083
,[16] Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) 470-501. | MR 76206 | Zbl 0066.29604
, ,[17] Markov subshifts and realization of β-expansions, J. Math. Soc. Japan 26 (1974) 33-55. | Zbl 0269.28006
, ,[18] Certain properties of the homology of U-systems, Mat. Zametki 10 (1971) 555-564, English Transl. in, Math. Notes 10 (1971) 758-763. | MR 293669 | Zbl 0227.58006
,[19] Incompressible transformations, Fund. Math. 56 (1964) 35-50. | MR 169988 | Zbl 0133.00304
,[20] Probability and Potentials, Blaisdell Publishing Co, Ginn and Co, Waltham, MA, 1966. | MR 205288 | Zbl 0138.10401
,[21] On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | Zbl 0099.28103
,[22] Natural coefficients and invariants for Markov-shifts, Invent. Math. 76 (1) (1984) 15-32. | MR 739621 | Zbl 0563.28008
, ,[23] Symmetric Gibbs measures, Trans. Amer. Math. Soc. 349 (1997) 2775-2811. | MR 1422906 | Zbl 0873.28008
, ,[24] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR 97374 | Zbl 0079.08901
,[25] Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc. 131 (6) (2003) 1751-1758. | MR 1955261 | Zbl 1009.37003
,[26] Infinite invariant measures on the circle, in: Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975, Symposia Mathematica, vol. XXI, Academic Press, London, 1977, pp. 37-43. | MR 476996 | Zbl 0375.28013
,[27] Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. | MR 1419320 | Zbl 0819.11027
,[28] β-automorphisms are Bernoulli shifts, Acta. Math. Acad. Sci. Hungar. 24 (1973) 273-278. | Zbl 0268.28007
,[29] Ergodic properties of nonnegative matrices. I, Pacific J. Math. 22 (1967) 361-386. | MR 214145 | Zbl 0171.15503
,[30] Equilibrium states for β-transformations and related transformations, Math. Z. 159 (1) (1978) 65-88. | Zbl 0357.28014 | Zbl 0364.28016
,