@article{AIHPB_2006__42_1_1_0, author = {Testud, Beno\^\i t}, title = {Mesures quasi-Bernoulli au sens faible : r\'esultats et exemples}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {42}, year = {2006}, pages = {1-35}, doi = {10.1016/j.anihpb.2005.01.002}, mrnumber = {2196969}, zbl = {05021190}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIHPB_2006__42_1_1_0} }
Testud, Benoît. Mesures quasi-Bernoulli au sens faible : résultats et exemples. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) pp. 1-35. doi : 10.1016/j.anihpb.2005.01.002. http://gdmltest.u-ga.fr/item/AIHPB_2006__42_1_1_0/
[1] Ergodic Theory and Information, Wiley, New York, 1965. | MR 192027 | Zbl 0141.16702
,[2] Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 807-810. | MR 1300947 | Zbl 0815.28005
,[3] Spectre multifractal de mesures boréliennes sur , C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 253-256. | MR 1464815 | Zbl 0885.28006
, ,[4] The validity of the multifractal formalism : results and examples, Adv. in Math. 165 (2002) 264-284. | MR 1887585 | Zbl 1020.28005
, , ,[5] On the multifractal analysis of measures, J. Statist. Phys. 66 (1992) 775-790. | MR 1151978 | Zbl 0892.28006
, , ,[6] Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. | MR 1102677 | Zbl 0871.28009
,[7] Techniques in Fractal Geometry, Wiley, New York, 1997. | MR 1449135 | Zbl 0869.28003
,[8] Sur la dimension inférieure des mesures, Studia Math. 111 (1994) 1-17. | MR 1292850
,[9] The smoothness of -spectrum of self-similar measures with overlaps, J. London Math. Soc. 68 (2003) 102-118. | MR 1980246 | Zbl 1041.28004
,[10] The pressure function for products of non-negative matrices, Math. Res. Lett. 9 (2002) 363-378. | MR 1909650 | Zbl 01804061
, ,[11] D.J. Feng, K.S. Lau, Differentiability of pressure functions for products of non-negative matrices, preprint. | MR 1909650
[12] Sur la comparaison des mesures avec les mesures de Hausdorff, C. R Acad. Sci. Paris Sér. I Math. 321 (1995) 61-65. | MR 1340083 | Zbl 0843.28001
,[13] Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 309-338. | Numdam | MR 1625871 | Zbl 0903.28005
,[14] Weierstrass function with random phases, Trans. Amer. Math. Soc. 335 (2003) 3065-3077. | MR 1974675 | Zbl 1031.26009
,[15] Fractals and self similarity, Indiana Univ. Math. J. 30 (1981) 713-747. | MR 625600 | Zbl 0598.28011
,[16] Hausdorff dimension of Sofic affine-invariant sets, Israel J. Math. 94 (1996) 127-138. | MR 1394572 | Zbl 1075.37503
, ,[17] -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998) 225-251. | MR 1644468 | Zbl 0929.28005
, ,[18] Multifractal measures and a weak separation condition, Adv. in Math. 141 (1999) 45-96. | MR 1667146 | Zbl 0929.28007
, ,[19] Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor. 58 (1983) 267-285. | Numdam | MR 1222943 | Zbl 0784.60097
,[20] The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984) 1-9. | MR 771063 | Zbl 0539.28003
,[21] A dimension result arising from the -spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997) 2943-2951. | MR 1402878 | Zbl 0886.28006
,[22] Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. 63 (2001) 655-672. | MR 1825981 | Zbl 1013.28008
, ,[23] E. Olivier, Communication privée.
[24] A multifractal formalism, Adv. in Math. 116 (1995) 82-196. | MR 1361481 | Zbl 0841.28012
,[25] Multifractal measures, in: Proc. NATO Adv. Study Inst. Il Ciocco, vol. 372, 1997, pp. 175-186. | MR 1187311
,[26] On Hausdorff dimension of some fractal sets, Studia Math. 93 (1989) 155-186. | MR 1002918 | Zbl 0691.58029
, ,[27] Dimensions in a separable metric space, Kyushu J. Math. 49 (1995) 143-162. | MR 1339704 | Zbl 0905.54023
,[28] B. Testud, Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand, 2004.
[29] Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982) 57-74. | MR 633256 | Zbl 0483.28010
,[30] The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc. 108 (1990) 921-930. | MR 1000169 | Zbl 0721.28004
,