@article{AIHPB_2005__41_5_859_0, author = {Morvai, Guszt\'av and Weiss, Benjamin}, title = {Forward estimation for ergodic time series}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {41}, year = {2005}, pages = {859-870}, doi = {10.1016/j.anihpb.2004.07.002}, mrnumber = {2165254}, zbl = {1070.62073}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2005__41_5_859_0} }
Morvai, Gusztáv; Weiss, Benjamin. Forward estimation for ergodic time series. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) pp. 859-870. doi : 10.1016/j.anihpb.2004.07.002. http://gdmltest.u-ga.fr/item/AIHPB_2005__41_5_859_0/
[1] Universal schemes for prediction, gambling and portfolio selection, Ann. Probab. 20 (1992) 901-941, Correction, Ann. Probab. 23 (1995) 474-478. | MR 1159579 | Zbl 0758.90006
,[2] The strong low of large numbers for sequential decisions under uncertainty, IEEE Trans. Inform. Theory 40 (1994) 609-634. | MR 1295308 | Zbl 0827.62077
,[3] Universal schemes for learning the best nonlinear predictor given the infinite past and side information, IEEE Trans. Inform. Theory 45 (1999) 1165-1185. | MR 1686250 | Zbl 0959.62078
,[4] Weighted sums of certain dependent random variables, Tohoku Math. J. 37 (1967) 357-367. | MR 221571 | Zbl 0178.21103
,[5] D.H. Bailey, Sequential Schemes for Classifying and Predicting Ergodic Processes, Ph.D. thesis, Stanford University, 1976.
[6] Open problems in information theory, in: 1975 IEEE Joint Workshop on Information Theory, IEEE Press, New York, 1975, pp. 35-36. | MR 469507
,[7] Probability, Random Processes, and Ergodic Properties, Springer-Verlag, New York, 1988. | MR 918767 | Zbl 0644.60001
,[8] A Distribution Free Theory of Nonparametric Regression, Springer-Verlag, New York, 2002. | MR 1920390 | Zbl 1021.62024
, , , ,[9] Strategies for sequential prediction of stationary time series, in: , , (Eds.), Modeling Uncertainty an Examination of Stochastic Theory, Methods, and Applications, Kluwer Academic, 2002, pp. 225-248. | MR 1893282
, ,[10] A simple randomized algorithm for consistent sequential prediction of ergodic time series, IEEE Trans. Inform. Theory 45 (1999) 2642-2650. | MR 1725166 | Zbl 0951.62080
, , ,[11] Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory 44 (1998) 886-892. | MR 1607704 | Zbl 0899.62122
, , ,[12] Random Markov processes and uniform martingales, Israel J. Math. 71 (1990) 33-54. | MR 1074503 | Zbl 0711.60041
,[13] Strongly mixing g-measures, Invent. Math. 16 (1972) 309-324. | MR 310193 | Zbl 0241.28014
,[14] The ergodic theorem for a sequence of functions, Duke Math. J. 6 (1940) 27-30. | JFM 66.1286.01 | MR 2028
,[15] G. Morvai, Estimation of conditional distribution for stationary time series, Ph.D. thesis, Technical University of Budapest, 1994.
[16] Guessing the output of a stationary binary time series, in: , , (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. | MR 2017826 | Zbl pre05280104
,[17] Forecasting for stationary binary time series, Acta Appl. Math. 79 (2003) 25-34. | MR 2021874 | Zbl 1030.62076
, ,[18] Weakly convergent nonparametric forecasting of stationary time series, IEEE Trans. Inform. Theory 43 (1997) 483-498. | MR 1447529 | Zbl 0871.62082
, , ,[19] Nonparametric inferences for ergodic, stationary time series, Ann. Statist. 24 (1996) 370-379. | MR 1389896 | Zbl 0855.62076
, , ,[20] Guessing the next output of a stationary process, Israel J. Math. 30 (1978) 292-296. | MR 508271 | Zbl 0386.60032
,[21] Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, 1974. | MR 447525 | Zbl 0296.28016
,[22] Prediction of random sequences and universal coding, Problems Inform. Transmission 24 (April-June 1988) 87-96. | MR 955983 | Zbl 0666.94009
,[23] Cutting and stacking: a method for constructing stationary processes, IEEE Trans. Inform. Theory 37 (1991) 1605-1614. | MR 1134300 | Zbl 0741.94007
,[24] Single Orbit Dynamics, American Mathematical Society, 2000. | MR 1727510 | Zbl 1083.37500
,