On stationary distributions for the KPP equation with branching noise
Horridge, Paul ; Tribe, Roger
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004), p. 759-770 / Harvested from Numdam
@article{AIHPB_2004__40_6_759_0,
     author = {Horridge, Paul and Tribe, Roger},
     title = {On stationary distributions for the KPP equation with branching noise},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {40},
     year = {2004},
     pages = {759-770},
     doi = {10.1016/j.anihpb.2004.01.005},
     mrnumber = {2096217},
     zbl = {1058.60049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2004__40_6_759_0}
}
Horridge, Paul; Tribe, Roger. On stationary distributions for the KPP equation with branching noise. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) pp. 759-770. doi : 10.1016/j.anihpb.2004.01.005. http://gdmltest.u-ga.fr/item/AIHPB_2004__40_6_759_0/

[1] S. Athreya, R. Tribe, Uniqueness for a class of one-dimensional stochastic PDEs using moment duality, Ann. Probab. 28 (2002) 1711-1734. | MR 1813840 | Zbl 1044.60048

[2] C. Donati-Martin, E. Pardoux, White noise driven SPDEs with reflection, Prob. Theory Related Fields 95 (1993) 1-24. | MR 1207304 | Zbl 0794.60059

[3] R. Durrett, Ten lectures on particle systems, in: Lecture Notes in Mathematics, vol. 1608, Springer, Berlin, 1993, pp. 97-201. | MR 1383122 | Zbl 0840.60088

[4] S.N. Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, 1986. | MR 838085 | Zbl 0592.60049

[5] T.E. Harris, On a class of set valued Markov processes, Ann. Probab. 4 (1976) 175-194. | MR 400468 | Zbl 0357.60049

[6] P. Horridge, Some methods for proving uniqueness of stationary distributions for stochastic PDEs, Warwick University, PhD Thesis, 2001.

[7] C. Mueller, R. Tribe, A phase transition for a stochastic PDE related to the contact process, Probab. Theory Related Fields 100 (1994) 131-156. | MR 1296425 | Zbl 0809.60072

[8] C. Mueller, R. Tribe, Stochastic p.d.e.'s arising from the long range contact and long range voter processes, Probab. Theory Related Fields 102 (1995) 519-545. | MR 1346264 | Zbl 0827.60050

[9] E. Perkins, Dawson-Watanabe superprocesses and measure valued diffusions, in: Lecture Notes in Mathematics, vol. 1781, Springer, Berlin, 2002, pp. 125-324. | MR 1915445 | Zbl 1020.60075

[10] T. Shiga, Two contrasting properties of solutions for one-dimensional stochastic differential equations, Canadian J. Math. 46 (1993) 415-437. | MR 1271224 | Zbl 0801.60050

[11] R. Tribe, A travelling wave solution to the Kolmogorov equation with noise, Stochastics Stochastics Rep. 56 (1996) 317-340. | MR 1396765 | Zbl 1002.60555