@article{AIHPB_2004__40_6_759_0, author = {Horridge, Paul and Tribe, Roger}, title = {On stationary distributions for the KPP equation with branching noise}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {40}, year = {2004}, pages = {759-770}, doi = {10.1016/j.anihpb.2004.01.005}, mrnumber = {2096217}, zbl = {1058.60049}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2004__40_6_759_0} }
Horridge, Paul; Tribe, Roger. On stationary distributions for the KPP equation with branching noise. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) pp. 759-770. doi : 10.1016/j.anihpb.2004.01.005. http://gdmltest.u-ga.fr/item/AIHPB_2004__40_6_759_0/
[1] Uniqueness for a class of one-dimensional stochastic PDEs using moment duality, Ann. Probab. 28 (2002) 1711-1734. | MR 1813840 | Zbl 1044.60048
, ,[2] White noise driven SPDEs with reflection, Prob. Theory Related Fields 95 (1993) 1-24. | MR 1207304 | Zbl 0794.60059
, ,[3] Ten lectures on particle systems, in: Lecture Notes in Mathematics, vol. 1608, Springer, Berlin, 1993, pp. 97-201. | MR 1383122 | Zbl 0840.60088
,[4] Markov Processes, Characterization and Convergence, Wiley, 1986. | MR 838085 | Zbl 0592.60049
, ,[5] On a class of set valued Markov processes, Ann. Probab. 4 (1976) 175-194. | MR 400468 | Zbl 0357.60049
,[6] P. Horridge, Some methods for proving uniqueness of stationary distributions for stochastic PDEs, Warwick University, PhD Thesis, 2001.
[7] A phase transition for a stochastic PDE related to the contact process, Probab. Theory Related Fields 100 (1994) 131-156. | MR 1296425 | Zbl 0809.60072
, ,[8] Stochastic p.d.e.'s arising from the long range contact and long range voter processes, Probab. Theory Related Fields 102 (1995) 519-545. | MR 1346264 | Zbl 0827.60050
, ,[9] Dawson-Watanabe superprocesses and measure valued diffusions, in: Lecture Notes in Mathematics, vol. 1781, Springer, Berlin, 2002, pp. 125-324. | MR 1915445 | Zbl 1020.60075
,[10] Two contrasting properties of solutions for one-dimensional stochastic differential equations, Canadian J. Math. 46 (1993) 415-437. | MR 1271224 | Zbl 0801.60050
,[11] A travelling wave solution to the Kolmogorov equation with noise, Stochastics Stochastics Rep. 56 (1996) 317-340. | MR 1396765 | Zbl 1002.60555
,