@article{AIHPB_2004__40_5_635_0, author = {Mayer-Wolf, Eddy and Roitershtein, Alexander and Zeitouni, Ofer}, title = {Limit theorems for one-dimensional transient random walks in Markov environments}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {40}, year = {2004}, pages = {635-659}, doi = {10.1016/j.anihpb.2004.01.003}, mrnumber = {2086017}, zbl = {1070.60024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2004__40_5_635_0} }
Mayer-Wolf, Eddy; Roitershtein, Alexander; Zeitouni, Ofer. Limit theorems for one-dimensional transient random walks in Markov environments. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) pp. 635-659. doi : 10.1016/j.anihpb.2004.01.003. http://gdmltest.u-ga.fr/item/AIHPB_2004__40_5_635_0/
[1] Asymptotic behavior for random walks in random environments, J. Appl. Probab. 36 (1999) 334-349. | MR 1724844 | Zbl 0946.60046
,[2] The Markov renewal theorem and related results, Markov Proc. Related Fields 3 (1997) 103-127. | MR 1446921 | Zbl 0906.60052
,[3] Applied Probability and Queues, Wiley, New York, 1987. | MR 889893 | Zbl 0624.60098
,[4] Limit theorems for semi-Markov renewal theory for Markov chains, Ann. Probab. 6 (1978) 809-814. | MR 503952 | Zbl 0397.60052
, , ,[5] A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245 (1978) 493-501. | MR 511425 | Zbl 0397.60053
, ,[6] A renewal approach to the Perron-Frobenius theory of nonnegative kernels on general state spaces, Math. Z. 179 (1982) 507-529. | Zbl 0471.28010
, ,[7] On some random walks on Z in random medium, Ann. Probab. 30 (2002) 1266-1312. | MR 1920108 | Zbl 1021.60034
,[8] Replication of a multicomponent chain by the “lightning mechanism”, Biophysics 12 (1967) 336-341.
,[9] B. de Saporta, Tails of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients, Stoch. Proc. Appl. (2004), in press. | Zbl 1096.60025
[10] Probability: Theory and Examples, Duxbury Press, Belmont, 1996. | MR 1609153
,[11] Limit Distributions for Sums of Indpendent Random Variables, Addison-Wesley, Reading, MA, 1962. | MR 62975 | Zbl 0056.36001
, ,[12] Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991) 126-166. | MR 1097468 | Zbl 0724.60076
,[13] A limit law for random walk in a random environment, Comp. Math. 30 (1975) 145-168. | Numdam | MR 380998 | Zbl 0388.60069
, , ,[14] Random difference equations and renewal theory for products of random matrices, Acta. Math. 131 (1973) 208-248. | MR 440724 | Zbl 0291.60029
,[15] Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2 (1974) 355-386. | MR 365740 | Zbl 0303.60090
,[16] Generalized Poisson distributions as limits of sums for arrays of dependent random vectors, J. Multivariate Anal. 52 (1995) 199-244. | MR 1323331 | Zbl 0821.60032
,[17] A random walk on the line with stochastic structure, Teoriya Veroyatnosti i Primeneniya 18 (1973) 406-408. | MR 319274 | Zbl 0299.60054
,[18] Lectures on Random Media, in: Lecture Notes in Mathematics, vol. 1581, Springer, New York, 1994. | MR 1307415 | Zbl 0814.60093
,[19] General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. | MR 776608 | Zbl 0551.60066
,[20] A. Roitershtein, One-dimensional linear recursions with Markov-dependent coefficients, 2004, in preparation.
[21] Stable Non-Gaussian Random Processes, Chapman & Hall, 1994. | MR 1280932 | Zbl 0925.60027
, ,[22] On the theory of Markov renewal, Theor. Probab. Appl. 29 (1984) 247-265. | MR 749913 | Zbl 0557.60078
,[23] Random walks in random environments, Ann. Probab. 3 (1975) 1-31. | MR 362503 | Zbl 0305.60029
,[24] On a central limit theorem for m-dependent sequences, Bull. Polish Acad. Sci. 36 (1988) 327-331. | MR 1101677 | Zbl 0759.60022
,[25] Topics in random walks in random environment, 2002. | Zbl 1060.60102
,[26] More randomness of environment does not always slow down a random walk, J. Theoret Probab. 14 (3) (2001) 699-715. | MR 1860519 | Zbl 0989.60046
,[27] One-dimensional random walks in two-component chain, Soviet Math. Dokl. 13 (5) (1972) 1172-1176. | MR 314119 | Zbl 0276.60067
,[28] Random walks in random environment, in: XXXI Summer School in Probability, St. Flour, 2001, Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004, pp. 193-312. | MR 2071631 | Zbl 1060.60103
,