@article{AIHPB_2004__40_2_141_0, author = {Ferrari, Pablo A. and Landim, Claudio and Thorisson, H.}, title = {Poisson trees, succession lines and coalescing random walks}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {40}, year = {2004}, pages = {141-152}, doi = {10.1016/j.anihpb.2003.12.001}, mrnumber = {2044812}, zbl = {1042.60064}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2004__40_2_141_0} }
Ferrari, P. A.; Landim, C.; Thorisson, H. Poisson trees, succession lines and coalescing random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) pp. 141-152. doi : 10.1016/j.anihpb.2003.12.001. http://gdmltest.u-ga.fr/item/AIHPB_2004__40_2_141_0/
[1] Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23 (1) (1995) 87-104. | MR 1330762 | Zbl 0827.60079
,[2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu.
[3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981.
[4] Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989) 501-505. | MR 990777 | Zbl 0662.60113
, ,[5] Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247.
, , ,[6] The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. | MR 2094432
, , , ,[7] Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. | MR 2071422
, , ,[8] Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms 9 (3) (1996) 295-315. | MR 1606845 | Zbl 0866.60088
, ,[9] Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. | MR 1961286
, ,[10] Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B 46 (1992) 973-982.
, ,[11] Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett. 72 (1994) 2286-2289.
, ,[12] Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997.
, ,[13] Point-stationarity in d dimensions and Palm theory, Bernoulli 5 (5) (1999) 797-831. | MR 1715440 | Zbl 0953.60029
,[14] Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. | MR 1741181 | Zbl 0949.60007
,[15] The true self-repelling motion, Probab. Theory Related Fields 111 (3) (1998) 375-452. | MR 1640799 | Zbl 0912.60056
, ,