@article{AIHPB_2003__39_4_593_0, author = {Geiger, Jochen and Kersting, G\"otz and Vatutin, Vladimir A.}, title = {Limit theorems for subcritical branching processes in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {39}, year = {2003}, pages = {593-620}, doi = {10.1016/S0246-0203(02)00020-1}, zbl = {1038.60083}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2003__39_4_593_0} }
Geiger, Jochen; Kersting, Götz; Vatutin, Vladimir A. Limit theorems for subcritical branching processes in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) pp. 593-620. doi : 10.1016/S0246-0203(02)00020-1. http://gdmltest.u-ga.fr/item/AIHPB_2003__39_4_593_0/
[1] V.I. Afanasyev, Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU, 1980.
[2] Limit theorems for a moderately subcritical branching process in a random environment, Discrete Math. Appl. 8 (1998) 35-52. | MR 1669043 | Zbl 0977.60080
,[3] Bounds on the extinction time distribution of a branching process, Adv. Appl. Probab. 6 (1974) 322-335. | MR 423562 | Zbl 0293.60077
,[4] On branching processes with random environments: I, II, Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858. | Zbl 0228.60033 | Zbl 0228.60032
, ,[5] Branching Processes, Springer, New York, 1972. | MR 373040 | Zbl 0259.60002
, ,[6] On conditioning a random walk to stay positive, Ann. Probab. 22 (1994) 2152-2167. | MR 1331218 | Zbl 0834.60079
, ,[7] On the survival probability of a branching process in a finite state i.i.d. environment, Stochastic Processes Appl. 27 (1988) 151-157. | MR 934535 | Zbl 0634.60072
,[8] On the asymptotic behaviour of first passage times for transient random walk, Probab. Theory Related Fields 81 (1989) 239-246. | MR 982656 | Zbl 0643.60053
,[9] On the survival probability of a branching process in a random environment, Adv. Appl. Probab. 29 (1997) 38-55. | MR 1432930 | Zbl 0880.60086
, ,[10] An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York, 1971. | MR 270403 | Zbl 0138.10207
,[11] Reduced subcritical Galton-Watson processes in a random environment, Adv. Appl. Probab. 31 (1999) 88-111. | Zbl 0938.60090
, ,[12] Elementary new proofs of classical limit theorems for Galton-Watson processes, J. Appl. Probab. 36 (1999) 301-309. | Zbl 0942.60071
,[13] The survival probability of a critical branching process in random environment, Teor. Verojatnost. i Primenen. 45 (2000) 607-615. | MR 1967796 | Zbl 0994.60095
, ,[14] Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris Sér. I Math. 332 (4) (2001) 339-344. | MR 1821473 | Zbl 0988.60080
, ,[15] Determination of the limiting coefficient for exponential functionals of random walks with positive drift, J. Math. Sci. Univ. Tokyo 5 (1998) 299-332. | MR 1633937 | Zbl 0913.60053
,[16] Foundations of Modern Probability, Springer, New York, 1997. | MR 1464694 | Zbl 0892.60001
,[17] On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment, Theory Probab. Appl. 21 (1976) 791-804. | MR 428492 | Zbl 0384.60058
,[18] On the survival probability of a branching process in a random environment, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 1-10. | Numdam | MR 1373725 | Zbl 0840.60078
,[19] On branching processes in random environments, Ann. Math. Stat. 40 (1969) 814-827. | MR 246380 | Zbl 0184.21103
, ,[20] The exponential rate of convergence of the distribution of the maximum of a random walk. Part II, J. Appl. Probab. 13 (1976) 733-740. | MR 440705 | Zbl 0353.60072
, ,