@article{AIHPB_2003__39_3_385_0, author = {Liverani, Carlangelo and Maume-Deschamps, V\'eronique}, title = {Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {39}, year = {2003}, pages = {385-412}, doi = {10.1016/S0246-0203(02)00005-5}, zbl = {1021.37002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2003__39_3_385_0} }
Liverani, Carlangelo; Maume-Deschamps, Véronique. Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) pp. 385-412. doi : 10.1016/S0246-0203(02)00005-5. http://gdmltest.u-ga.fr/item/AIHPB_2003__39_3_385_0/
[1] H. van den Bedem, N. Chernov, Expanding maps of an interval with holes, Preprint. | MR 1908547 | Zbl 1022.37024
[2] Lattice Theory, A.M.S. Colloq. Publ., Providence, 1967. | MR 227053 | Zbl 0153.02501 | Zbl 0126.03801
,[3] Zeta functions and transfer operator for piecewise monotone transformations, Comm. Math. Phys. 127 (1990) 459-477. | MR 1040891 | Zbl 0703.58048
, ,[4] Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 18 (5) (1998) 1049-1073. | MR 1653291 | Zbl 0982.37011
, , ,[5] Ergodic properties of maps of the interval, in: , , (Eds.), Dynamical Systems, Hermann, 1996. | MR 1600931 | Zbl 0876.58024
,[6] The Pianigiani-Yorke measure for topological Markov chains, Israel J. Math. 97 (1997) 61-70. | MR 1441238 | Zbl 0902.58016
, , ,[7] The Pianigiani-Yorke measure and the asymptotic law on the limit Cantor set of expanding systems, Nonlinearity 7 (1994) 1437-1443. | MR 1294552 | Zbl 0806.58037
, , ,[8] Quasi-stationary distribution and Gibbs measure of expanding systems, Instabilities and Non-Equilibrium Structures (1996) 205-219. | MR 1406590 | Zbl 0897.60097
, , ,[9] On the existence of conditionally invariant measures in dynamical systems, Nonlinearity 13 (2000) 1263-1274. | MR 1767958 | Zbl 0974.37003
, , ,[10] Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (1995) 501-521. | MR 1334159 | Zbl 0827.60061
, , , ,[11] Ruelle's Perron-Frobenius theorem and projective metrics, Coll. Math. Soc. J. Bollyai 27 (1979).
, ,[12] Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (2) (1989) 433-497. | MR 1005524 | Zbl 0686.58027
,[13] Stability of the Spectral Gap for transfer operators, Annali della Scuola Normale di Pisa, Classe di Scienze (4) XXVIII (1999) 141-152. | Numdam | MR 1679080 | Zbl 0956.37003
, ,[14] Decay of correlations, Ann. of Math. 142 (2) (1995) 239-301. | MR 1343323 | Zbl 0871.58059
,[15] Decay of correlations for piecewise expanding maps, J. Statist. Phys. 78 (3-4) (1995) 1111-1129. | Zbl 1080.37501
,[16] Conformal measure and decay of correlations for covering weighted systems, Ergodic Theory Dynam. Systems 18 (6) (1998) 1399-1420. | MR 1658635 | Zbl 0915.58061
, , ,[17] Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc. 252 (1989) 433-497. | MR 534126 | Zbl 0417.28010
, ,[18] Bounded variation and invariant measures, Studia Math. 71 (1982) 69-80. | MR 728198 | Zbl 0575.28011
,[19] Geometric ergodicity in denumerable Markov chains, Quart. J. Math. 13 (2) (1962) 7-28. | MR 141160 | Zbl 0104.11805
,[20] M. Viana, Stochastic dynamics of deterministic systems, Brazillian Math. Colloquium, IMPA, 1997.
[21] Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982) 109-124. | MR 684248 | Zbl 0523.58024
,