@article{AIHPB_2002__38_6_991_0, author = {Massart, Pascal}, title = {Tusnady's lemma, 24 years later}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {38}, year = {2002}, pages = {991-1007}, mrnumber = {1955348}, zbl = {1016.60037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_6_991_0} }
Massart, Pascal. Tusnady's lemma, 24 years later. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 991-1007. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_6_991_0/
[1] Hungarian constructions from the nonasymptotic view point, Ann. Probab. 17 (1) (1989) 239-256. | MR 972783 | Zbl 0667.60042
, ,[2] Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR 666546 | Zbl 0539.60029
, ,[3] A. Carter, D. Pollard, Tusnády's inequality revisited, Preprint, 2000.
[4] Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
, ,[5] An approximation of partial sums of independent rv-s, and the sample df. I, Z. Warscheinlichkeitstheorie Verwandte Geb. 32 (1975) 111-131. | MR 375412 | Zbl 0308.60029
, , ,[6] A refinement of the KMT inequality for the uniform empirical process, Ann. Probab. 15 (1987) 871-884. | MR 893903 | Zbl 0638.60040
, ,[7] Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist. 24 (1996) 2399-2430. | MR 1425959 | Zbl 0867.62035
,[8] Empirical Processes with Applications to Statistics, Wiley, New York, 1986. | MR 838963 | Zbl 1170.62365
, ,[9] G. Tusnády, A study of statistical hypotheses, PhD Thesis, Hungarian Academy of Sciences, Budapest, 1977 (In Hungarian).