@article{AIHPB_2002__38_6_959_0, author = {Hall, Peter and Park, Byeong U. and Turlach, Berwin A.}, title = {Rolling-ball method for estimating the boundary of the support of a point-process intensity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {38}, year = {2002}, pages = {959-971}, mrnumber = {1955346}, zbl = {1011.62035}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_6_959_0} }
Hall, Peter; Park, Byeong U.; Turlach, Berwin A. Rolling-ball method for estimating the boundary of the support of a point-process intensity. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 959-971. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_6_959_0/
[1] Limit theorems for functionals of convex hulls, Probab. Theory Related Fields 100 (1994) 31-55. | MR 1292189 | Zbl 0808.60019
, ,[2] Data Envelope Analysis: Theory, Methodology and Applications, Kluwer, Boston, 1995. | Zbl 0858.00049
, , , ,[3] Economics of scale in US electric power generation, J. Polit. Economy 84 (1976) 653-667.
, ,[4] The convex hull of a random set of points, Biometrika 52 (1965) 331-343. | MR 207004 | Zbl 0138.41301
,[5] On estimation of monotone and concave frontier functions, J. Amer. Statist. Assoc. 94 (1999) 220-228. | MR 1689226 | Zbl 1043.62105
, , , ,[6] Limit theorems for convex hulls, Probab. Theory Related Fields 79 (1988) 327-368. | MR 959514 | Zbl 0635.60012
,[7] Statistical inference and nonparametric efficiency: a selective survey, J. Productivity Anal. 7 (1996) 161-176.
,[8] On polynomial estimators of frontiers and boundaries, J. Multivariate Anal. 66 (1998) 71-98. | MR 1648521 | Zbl 01211571
, , ,[9] Estimation of non-sharp support boundaries, J. Multivariate Anal. 55 (1995) 205-218. | MR 1370400 | Zbl 0863.62030
, , ,[10] A note on the convergence of nonparametric DEA estimators for production efficiency scores, Econometric Theory 14 (1998) 783-793. | MR 1666696
, , ,[11] Minimax Theory of Image Reconstruction, Lecture Notes in Statistics, 82, Springer-Verlag, Berlin, 1993. | MR 1226450 | Zbl 0833.62039
, ,[12] Efficient estimation of monotone boundaries, Ann. Statist. 23 (1995) 476-489. | MR 1332577 | Zbl 0829.62043
, , ,[13] On estimation of monotone and convex boundaries, Pub. Inst. Statist. Univ. Paris 49 (1995) 3-18. | MR 1744393 | Zbl 0817.62023
, , ,[14] Asymptotical minimax recovery of sets with smooth boundaries, Ann. Statist. 23 (1995) 502-524. | MR 1332579 | Zbl 0834.62038
, ,[15] Two dimensional interpolation from random data, Comput. J. 19 (1976) 178-181. | MR 431604 | Zbl 0321.65009
,[16] Lectures on Random Voronoi Tessellations, Lecture Notes in Statistics, 87, Springer-Verlag, New York, 1994. | MR 1295245 | Zbl 0812.60016
,[17] Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain, Ann. Inst. Statist. Math. 47 (1995) 21-29. | MR 1341202 | Zbl 0829.60040
,[18] Spatial Statistics, Wiley, New York, 1981. | MR 624436 | Zbl 0583.62087
,[19] Computational Geometry in C, Cambridge University Press, Cambridge, 1994. | Zbl 0912.68201
,[20] On the convex hull of n randomly chosen points, Z. Wahrscheinlichkeitstheorie Verw. Geb. 2 (1963) 75-84. | Zbl 0118.13701
, ,[21] On the convex hull of n randomly chosen points II, Z. Wahrscheinlichkeitstheorie Verw. Geb. 3 (1964) 138-147. | MR 169139 | Zbl 0126.34103
, ,[22] Data envelopment analysis: the evolution of the state-of-the-art, 1978-1995, J. Productivity Anal. 7 (1996) 99-137.
,[23] R. Turner, D. Macqueen, S function Deldir to compute the Dirichlet (Voronoi) tesselation and Delaunay triangulation of a planar set of data points, Available from Statlib, 1996.