@article{AIHPB_2002__38_6_1071_0, author = {Zaitsev, Andrei Yu.}, title = {Estimates of the rate of approximation in a de-poissonization lemma}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {38}, year = {2002}, pages = {1071-1086}, mrnumber = {1955354}, zbl = {1019.60017}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_6_1071_0} }
Zaitsev, Andrei Yu. Estimates of the rate of approximation in a de-poissonization lemma. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 1071-1086. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_6_1071_0/
[1] On the asymptotic normality of Lp-norms of empirical functionals, Math. Methods Statist. 4 (1995) 1-19. | MR 1324687 | Zbl 0831.62019
, ,[2] Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 (1979) 29-54. | MR 515811 | Zbl 0392.60024
, ,[3] Probability and Metrics, Lectures Notes Aarhus Univ., 1976.
,[4] An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1966. | MR 210154 | Zbl 0138.10207
,[5] E. Giné, D.M. Mason, A.Yu. Zaitsev, The L1-norm density estimator process, Ann. Probab., 2001, Accepted for publication. | MR 1964947 | Zbl 1031.62026
[6] Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl. 31 (1986) 203-220. | Zbl 0659.60042
,[7] Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 (1996) 807-831, (in Russian). | MR 1643370 | Zbl 0881.60034
,[8] Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: Probability and Statistics 2 (1998) 41-108. | Numdam | MR 1616527 | Zbl 0897.60033
,[9] Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III, Theor. Probab. Appl. 45 (2000) 718-738, 46 (2001) 535-561; 744-769. | Zbl 0994.60029
,