@article{AIHPB_2002__38_6_1039_0,
author = {Pollard, David},
title = {Maximal inequalities via bracketing with adaptive truncation},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
volume = {38},
year = {2002},
pages = {1039-1052},
mrnumber = {1955351},
zbl = {1019.60015},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_6_1039_0}
}
Pollard, David. Maximal inequalities via bracketing with adaptive truncation. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 1039-1052. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_6_1039_0/
[1] , , A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597. | MR 832025 | Zbl 0595.60027
[2] , , , , The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 77 (1988) 271-306. | MR 927241 | Zbl 0618.60022
[3] , Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb. 70 (1985) 591-608. | MR 807339 | Zbl 0575.60034
[4] , , Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab. 12 (1984) 13-34. | MR 723727 | Zbl 0572.60037
[5] , , Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields 97 (1993) 113-150. | MR 1240719 | Zbl 0805.62037
[6] , Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952) 277-281. | Zbl 0046.35103
[7] , , , Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré 31 (1995) 393-427. | Numdam | MR 1324814 | Zbl 0817.60028
[8] , Central limit theorems for empirical measures, Ann. Probab. 6 (1978) 899-929. | MR 512411 | Zbl 0404.60016
[9] , Donsker classes of functions, in: , , , (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352. | MR 665285 | Zbl 0468.60009
[10] , , Probability in Banach Spaces: Isoperimetry and Processes, Springer, New York, 1991. | MR 1102015 | Zbl 0748.60004
[11] , Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré 22 (1986) 381-423. | Numdam | MR 871904 | Zbl 0615.60032
[12] , A central limit theorem under metric entropy with L2 bracketing, Ann. Probab. 15 (1987) 897-919. | MR 893905 | Zbl 0665.60036
[13] , Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, 995, Springer, New York, 1983, pp. 123-154. | MR 717231 | Zbl 0517.60043
[14] , A User's Guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2001. | Zbl 0992.60001
[15] , A uniform central limit theorem for partial-sum processes indexed by sets, in: , (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240. | MR 696030 | Zbl 0497.60030
[16] , Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré 29 (1993) 587-597. | Numdam | MR 1251142 | Zbl 0798.60027