@article{AIHPB_2002__38_5_711_0, author = {Gobet, Emmanuel}, title = {LAN property for ergodic diffusions with discrete observations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {38}, year = {2002}, pages = {711-737}, mrnumber = {1931584}, zbl = {1018.60076}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_5_711_0} }
Gobet, Emmanuel. LAN property for ergodic diffusions with discrete observations. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 711-737. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_5_711_0/
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967) 890-903. | MR 217444 | Zbl 0153.42002
,[2] Estimation of the coefficient of a diffusion from discrete observations, Stochastics 19 (1986) 263-284. | MR 872464 | Zbl 0626.62085
, ,[3] On estimating the diffusion coefficient, J. Appl. Probab. 24 (1987) 105-114. | MR 876173 | Zbl 0615.62109
,[4] Approximate discrete time schemes for statistics of diffusion processes, Statistics 20 (1989) 547-557. | MR 1047222 | Zbl 0704.62072
,[5] Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975. | MR 494490 | Zbl 0323.60056
,[6] Maximum contrast estimation for diffusion processes from discrete observations, Statistics 21 (1990) 99-116. | MR 1056065 | Zbl 0721.62082
,[7] On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré (Probab. Statist.) 29 (1993) 119-151. | Numdam | MR 1204521 | Zbl 0770.62070
, ,[8] Estimation of the diffusion coefficient for diffusion processes: random sampling, Scandinavian J. Statist. 21 (1994) 193-221. | MR 1292636 | Zbl 0804.62078
, ,[9] Local asymptotic mixed normality property for elliptic diffusion, Bernouilli 7 (6) (2001) 899-912. | MR 1873834 | Zbl 1003.60057
,[10] Local asymptotic minimax admissibility in estimation, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 175-194. | MR 400513 | Zbl 0281.62010
,[11] Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, 1980. | MR 600653
,[12] Local asymptotic normality and mixed normality for Markov statistical models, Probab. Theory Related Fields 86 (1990) 105-129. | MR 1061951 | Zbl 0685.60016
, , ,[13] J. Jacod, Private communication.
[14] Limit Theorems for Stochastic Processes, Springer, Berlin, 1987. | MR 959133 | Zbl 0635.60021
, ,[15] Brownian Motion and Stochastic Calculus, Springer, 1998. | MR 917065 | Zbl 0638.60065
, ,[16] Estimation of an ergodic diffusion from discrete observations, Scandinavian J. Statist. 24 (1997) 211-229. | MR 1455868 | Zbl 0879.60058
,[17] Stochastic differential equations and stochastic flows of diffeomorphisms, in: Ecole d'Eté de Probabilités de St-Flour XII, 1982, Lecture Notes in Math., 1097, Springer, 1984, pp. 144-305. | MR 876080 | Zbl 0554.60066
,[18] Limits of experiments, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 245-261. | Zbl 0271.62004
,[19] Asymptotics in Statistics, Springer, 1990. | MR 1066869 | Zbl 0719.62003
, ,[20] On conditional diffusion processes, Proc. Royal Soc. Edinburgh 115 A (1990) 243-255. | MR 1069520 | Zbl 0715.60097
, ,[21] Malliavin Calculus and Related Topics, Springer, 1995. | MR 1344217 | Zbl 0837.60050
,[22] Asymptotic theory for non-linear least square estimator for diffusion processes, Math. Operationsforsch. Statist. Ser. Stat. 14 (1983) 195-209. | MR 704787 | Zbl 0532.62060
,[23] Statistical Inference for Diffusion Type Processes, Kendall's Library of Statistics, 8, Edward Arnold, London, Oxford University Press, New York, 1999. | MR 1717690 | Zbl 0952.62077
,[24] Estimation for diffusion processes from discrete observations, J. Multivariate Anal. 41 (1992) 220-242. | MR 1172898 | Zbl 0811.62083
,[25] Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe, Probab. Theory Related Fields 92 (1992) 275-311. | Zbl 0767.60035
,[26] Asymptotic expansions for perturbed systems on Wiener space, maximum likelihood estimators, J. Multivariate Anal. 57 (1996) 1-36. | MR 1392575 | Zbl 0845.62054
,