@article{AIHPB_2002__38_4_385_0, author = {Cancrini, N. and Martinelli, Fabio and Roberto, C.}, title = {The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {38}, year = {2002}, pages = {385-436}, mrnumber = {1914934}, zbl = {01783420}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2002__38_4_385_0} }
Cancrini, N.; Martinelli, F.; Roberto, C. The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) pp. 385-436. http://gdmltest.u-ga.fr/item/AIHPB_2002__38_4_385_0/
[1] A Goldstone mode in the Kawasaki-Ising model, J. Stat. Phys. 77 (1/2) (1994) 77-87. | Zbl 0837.60094
,[2] Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses 10 (2001), S.M.F.
et al.,[3] Bertini L., Cancrini N., Cesi F., The spectral gap for a Glauber-type dynamics in a continuous gas, Preprint n. 00-249 on http://rene.ma.utexas.edu/mp_ arc.
[4] Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions, J. Stat. Phys. 97 (1999) 831-915. | MR 1734386 | Zbl 0958.82017
, , ,[5] Coercive inequalities for Gibbs measures, J. Funct. Anal. 162 (1999) 257-289. | MR 1682059 | Zbl 0932.60061
, ,[6] Coercive inequalities for Kawasaki dynamics. The product case, Markov Proc. Related Fields 5 (1999) 125-162. | MR 1762171 | Zbl 0934.60096
, ,[7] Kawasaki dynamics at low temperature, J. Stat. Phys. 95 (1/2) (1999) 219-275. | MR 1705586 | Zbl 0941.60092
, , ,[8] Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields (2001), To appear. | MR 1853483 | Zbl 1086.82002
,[9] Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Related Fields 6 (2000) 1-49. | MR 1758982 | Zbl 1005.82017
, ,[10] On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys. 41 (2000) 1391-1423. | MR 1757965 | Zbl 0977.82031
, ,[11] Diffusive scaling of the spectral gap for the dilute Ising lattice gas under the percolation threshold, Probab. Theory Related Fields (2001), To appear. | MR 1853481 | Zbl 1086.82018
, ,[12] Logarithmic Sobolev inequality for finite Markov chains, Ann. Appl. Probab. 6 (3) (1996) 695-750. | MR 1410112 | Zbl 0867.60043
, ,[13] Gibbs Measures and Phase Transitions, De Gruyter Series in Mathematics, 9, Walter de Gruyter, Berlin, 1988. | MR 956646 | Zbl 0657.60122
,[14] Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 399-433. | MR 1233852 | Zbl 0779.60078
, ,[15] Logarithmic Sobolev inequality for some models of random walks, Ann. Probab. 26 (4) (1998) 1855-1873. | MR 1675008 | Zbl 0943.60062
, ,[16] Lectures on Glauber dynamics for discrete spin models, Proceedings of the Saint Flour Summer School in Probability Theory, Lecture Notes in Math., 1717, 1997. | MR 1746301 | Zbl 1051.82514
,[17] An example of application of discrete Hardy's inequalities, Markov Process. Related Fields 5 (1999) 319-330. | MR 1710983 | Zbl 0942.60081
,[18] Diffusive limit of lattice gas with mixing conditions, Asian J. Math. 1 (4) (1997) 623-678. | MR 1621569 | Zbl 0947.60089
, ,[19] Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm. Math. Phys. 181 (1996) 367-408. | MR 1414837 | Zbl 0864.60079
,[20] Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Related Fields 109 (4) (1997) 507-538. | MR 1483598 | Zbl 0903.60087
,