@article{AIHPB_2001__37_6_725_0, author = {Doney, Ron A. and Nakhi, Y. B.}, title = {Perturbed and non-perturbed brownian taboo processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {37}, year = {2001}, pages = {725-736}, mrnumber = {1863275}, zbl = {0989.60076}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2001__37_6_725_0} }
Doney, R. A.; Nakhi, Y. B. Perturbed and non-perturbed brownian taboo processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) pp. 725-736. http://gdmltest.u-ga.fr/item/AIHPB_2001__37_6_725_0/
[1] On the lower limits of maxima and minima of Wiener processes and partial sums, Z. Wahrsch. Verw. Gebiete 43 (1978) 205-221. | MR 494527 | Zbl 0372.60113
,[2] Some calculations for perturbed Brownian motion, in: Sém. Probab. XXXII, Lecture Notes Math., 1686, 1998, pp. 231-236. | Numdam | MR 1655296 | Zbl 0911.60067
,[3] Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143 (1969) 173-185. | MR 253424 | Zbl 0187.41203
,[4] Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H. Poincaré 36 (2001) 251-274. | Numdam | MR 1751660 | Zbl 0970.60055
,[5] Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, 1966. | MR 232968 | Zbl 0143.08502
, , ,[6] A study of some perturbed processes related to Brownian motion, Ph. D. Thesis, University of Manchester, 2000.
,[7] Some Aspects of Brownian Motion. Part 1. Some Special Functionals, Birkhäuser, Basel, 1992. | MR 1193919 | Zbl 0779.60070
,