Free diffusions, free entropy and free Fisher information
Biane, Philippe ; Speicher, Roland
Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001), p. 581-606 / Harvested from Numdam
@article{AIHPB_2001__37_5_581_0,
     author = {Biane, Philippe and Speicher, Roland},
     title = {Free diffusions, free entropy and free Fisher information},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {37},
     year = {2001},
     pages = {581-606},
     mrnumber = {1851716},
     zbl = {1020.46018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2001__37_5_581_0}
}
Biane, Philippe; Speicher, Roland. Free diffusions, free entropy and free Fisher information. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) pp. 581-606. http://gdmltest.u-ga.fr/item/AIHPB_2001__37_5_581_0/

[1] P Biane, Free brownian motion, free stochastic calculus and random matrices, in: Voiculescu D.V (Ed.), Free Probability Theory, Fields Institute Communications, 12, 1997, pp. 1-20. | MR 1426833 | Zbl 0873.60056

[2] P Biane, On the free convolution with a semi-circular distribution, Indiana University Math. J. 46 (1997) 705-717. | MR 1488333 | Zbl 0904.46045

[3] P Biane, Free probability for probabilists, MSRI Preprint 40 (1998). | MR 2032363

[4] P Biane, Processes with free increments, Math. Zeit. 227 (1998) 143-174. | MR 1605393 | Zbl 0902.60060

[5] P Biane, R Speicher, Stochastic calculus with respect to free brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998) 373-409. | MR 1660906 | Zbl 0919.60056

[6] M Douglas, Stochastic master fields, Phys. Lett. B 344 (1995) 117-126. | MR 1314776

[7] M Douglas, Large N quantum field theory and matrix models, in: Voiculescu D.V (Ed.), Free Probability Theory, Fields Institute Communications, 12, 1997, pp. 21-40. | MR 1426834 | Zbl 0871.46035

[8] F.J Dyson, A brownian motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962) 1191-1198. | MR 148397 | Zbl 0111.32703

[9] M.I Freidlin, A.D Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer-Verlag, New York, 1998. | MR 1652127 | Zbl 0522.60055

[10] M Fukushima, Y Oshima, M Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19, Walter de Gruyter, Berlin, 1994. | MR 1303354 | Zbl 0838.31001

[11] R Gopakumar, D.J Gross, Mastering the master field, Nucl. Phys. B 451 (1995) 379-415. | MR 1352420 | Zbl 0925.46024

[12] J Greensite, M.B Halpern, Quenched master fields, Nucl. Phys. 211 (1988) 343-368.

[13] V.V Peller, Hankel operators in the perturbation theory of unitary and self-adjoint operators, Funct. Anal. Appl. 19 (1985) 111-123. | MR 800919 | Zbl 0587.47016

[14] R Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., 627, Amer. Math. Soc, Providence, RI, 1998. | MR 1407898 | Zbl 0935.46056

[15] D.W Stroock, Logarithmic Sobolev inequalities for Gibbs states, in: Dell'Antonio G, Mosco U (Eds.), Dirichlet Forms, Lectures given at the First C.I.M.E., Session held in Varenna, June 8-19, Lecture Notes in Mathematics, 1563, Springer-Verlag, Berlin, 1993, pp. 194-228. | MR 1292280 | Zbl 0801.60056

[16] E.B Saff, V Totik, Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997. | MR 1485778 | Zbl 0881.31001

[17] D.V Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991) 201-220. | MR 1094052 | Zbl 0736.60007

[18] D.V Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. I, Comm. Math. Phys. 155 (1993) 71-92. | MR 1228526 | Zbl 0781.60006

[19] D.V Voiculescu, The derivative of order 1/2 of a free convolution by a free semi-circular distribution, Indiana University Math. J. 46 (1997) 697-703. | MR 1488332 | Zbl 0920.46046

[20] D.V Voiculescu, Lectures on Free Probability Theory, Saint Flour Summer School, Lecture Notes in Mathematics, Springer, Berlin, 1999. | Zbl 1015.46037

[21] D.V Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V: noncommutative Hilbert transform, Invent. Math. 132 (1998) 189-227. | MR 1618636 | Zbl 0930.46053

[22] D.V Voiculescu, K Dykema, A Nica, Free Random Variables, CRM Monograph Series No. 1, Amer. Math. Soc, Providence, RI, 1992. | MR 1217253 | Zbl 0795.46049