@article{AIHPB_2001__37_4_481_0, author = {Fournier, Nicolas}, title = {Strict positivity of the solution to a $2$-dimensional spatially homogeneous Boltzmann equation without cutoff}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {37}, year = {2001}, pages = {481-502}, mrnumber = {1876840}, zbl = {0981.60056}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2001__37_4_481_0} }
Fournier, Nicolas. Strict positivity of the solution to a $2$-dimensional spatially homogeneous Boltzmann equation without cutoff. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) pp. 481-502. http://gdmltest.u-ga.fr/item/AIHPB_2001__37_4_481_0/
[1] On the Support of Wiener Functionals, Asymptotic Problems in Probability Theory, 1993. | MR 1354161 | Zbl 0790.60047
, , ,[2] Malliavin Calculus for white noise driven SPDEs, Potential Analysis 9 (1) (1998) 27-64. | MR 1644120 | Zbl 0928.60040
, ,[3] Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probability Theory and Related Fields 90 (1991) 377-402. | MR 1133372 | Zbl 0734.60027
, ,[4] Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, Lecture Notes in Math., 986, Springer Verlag, 1983, pp. 132-157. | Numdam | MR 770406 | Zbl 0525.60067
, ,[5] About the regularizing properties of the non cutoff Kac equation, Comm. Math. Physics 168 (1995) 416-440. | MR 1324404 | Zbl 0827.76081
,[6] Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys. 26 (1997) 341-357. | MR 1475459 | Zbl 0901.76072
,[7] Probabilistic interpretation and numerical approximation of a Kac equation without cutoff, Stochastic Processes and their Applications (2000), to appear. | MR 1720101 | Zbl 1009.76081
, , ,[8] Fournier N., Existence and regularity study for a 2-dimensional Kac equation without cutoff by a probabilistic approach, The Annals of Applied Probability, to appear. | Zbl 1056.60052
[9] Strict positivity of a solution to a Kac equation without cutoff, J. Statist. Phys. (1999), to appear. | Zbl 0959.82020
,[10] Fournier N., Strict positivity of the density for Poisson driven S.D.E.s, Stochastics and Stochastics Reports, to appear. | Zbl 0944.60066
[11] Existence and regularity of a solution to a Kac equation without cutoff using Malliavin Calculus, Comm. Math. Physics (1998), to appear. | MR 1711273 | Zbl 0953.60057
, ,[12] Asymptotic behaviour of the transition density for jump type processes in small time, Tohoku Math. J. 46 (1994) 443-456. | MR 1301283 | Zbl 0818.60074
,[13] Equations différentielles linéaires, la méthode de variation des constantes, in: Séminaire de Probabilités XVI, Lecture Notes in Math., 920, Springer Verlag, 1982, pp. 442-448. | Numdam | MR 658705 | Zbl 0479.60063
,[14] Limit Theorems for Stochastic Processes, Springer Verlag, 1987. | MR 959133 | Zbl 0635.60021
, ,[15] Densité en temps petit d'un processus de sauts, Séminaire de Probabilités XXI, 1987. | Numdam | Zbl 0616.60078
,[16] Strange behaviour of the heat kernel on the diagonal, in: (Ed.), Stochastic Processes, Physics and Geometry, World Scientific, 1990, pp. 516-527. | MR 1124229
,[17] Density in small time at accessible points for jump processes, Stochastic Processes and their Applications 67 (1997) 251-279. | MR 1449834 | Zbl 0889.60088
,[18] A Maxwellian lowerbound for solutions to the Boltzmann equation, Comm. Math. Phys. 183 (1997) 145-160. | MR 1461954 | Zbl 0866.76077
, ,[19] Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z.W. 66 (1978) 559-592. | MR 512334 | Zbl 0389.60079
,