@article{AIHPB_2000__36_4_435_0, author = {Wu, Liming}, title = {A deviation inequality for non-reversible Markov processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {36}, year = {2000}, pages = {435-445}, mrnumber = {1785390}, zbl = {0972.60003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2000__36_4_435_0} }
Wu, Liming. A deviation inequality for non-reversible Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) pp. 435-445. http://gdmltest.u-ga.fr/item/AIHPB_2000__36_4_435_0/
[1] The rate function of hypoelliptic diffusions, Comm. Pure Appl. Math. XLVII (6) (1994) 843-860. | MR 1280991 | Zbl 0811.58065
, ,[2] On the convergence of averages of mixing sequences, J. Theoret. Probab. 6 (3) (1993) 473-484. | MR 1230342 | Zbl 0776.60035
, ,[3] Martingale representation and a simple proof of logarithmic Sobolev inequality on path spaces, Elect. Comm. Probab. 2 (7) (1997). | MR 1484557 | Zbl 0890.60045
, , ,[4] Large deviations, Pure and Appl. Math. 137 (1989). | Zbl 0705.60029
, ,[5] Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1984; (2nd corrected printing). | MR 1335452 | Zbl 0531.47014
,[6] Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probab. XXXIII, Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 120-216. | Numdam | MR 1767995 | Zbl 0957.60016
,[7] Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1) (1994) 202-231. | MR 1279300 | Zbl 0798.60067
,[8] An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336; (in chinese).
,[9] Functional Analysis, 3rd edn., Springer, 1971. | Zbl 0217.16001
,