@article{AIHPB_2000__36_3_301_0, author = {Mueller, C. and Perkins, Edwin}, title = {Extinction for two parabolic stochastic PDE's on the lattice}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {36}, year = {2000}, pages = {301-338}, mrnumber = {1770621}, zbl = {0966.60060}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2000__36_3_301_0} }
Mueller, C.; Perkins, E. Extinction for two parabolic stochastic PDE's on the lattice. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) pp. 301-338. http://gdmltest.u-ga.fr/item/AIHPB_2000__36_3_301_0/
[1] Measure-valued Markov processes, in: Hennequin P.L. (Ed.), Ecole d'Ete de Probabilites de Saint Flour XXI-1991, Lecture Notes in Math., Vol. 1541, Springer, Berlin, 1993, pp. 1-260. | MR 1242575 | Zbl 0799.60080
,[2] Mutually catalytic super-Brownian motion in R2 (1999), in preparation.
, , , , , ,[3] Historical processes, Mem. Amer. Math. Soc. 93 (1991). | MR 1079034 | Zbl 0754.60062
, ,[4] Long-time behavior and coexistence in a mutually catalytic branching model, Ann. Probab. 26 (3) (1998) 1088-1138. | MR 1634416 | Zbl 0938.60042
, ,[5] Parabolic problems for the Anderson model, Comm. Math. Phys. 132 (3) (1990) 613-655. | MR 1069840 | Zbl 0711.60055
, ,[6] Essentials of Brownian Motion and Diffusion, Mathematical Surveys, 18, American Mathematical Society, Providence, RI, 1981. | MR 613983 | Zbl 0458.60002
,[7] Comparison methods for a class of function valued stochastic partial differential equations, Probab. Theory Related Fields 93 (1) (1992) 1-29. | MR 1172936 | Zbl 0767.60053
,[8] Interacting Particle Systems, Springer, Berlin, 1985. | MR 776231 | Zbl 0559.60078
,[9] The compact support property for solutions to the heat equation with noise, Probab. Theory Related Fields 93 (1992) 325-358. | MR 1180704 | Zbl 0767.60054
, ,[10] Uniqueness for a mutually catalytic branching model, Probab. Theory Related Fields 112 (2) (1998) 245-254. | MR 1653845 | Zbl 0912.60076
,[11] Diffusions, Markov Processes, and Martingales, Vol. 2: Ito Calculus, Wiley, Chichester, 1987. | MR 921238 | Zbl 0627.60001
, ,[12] An introduction to stochastic partial differential equations, in: Hennequin PL. (Ed.), Ecole d'Ete de Probabilites de Saint Flour XIV-1984, Lecture Notes in Math., Vol. 1180, Springer, Berlin, 1986. | MR 876085 | Zbl 0608.60060
,