The “progressive mixture” estimator for regression trees
Blanchard, Gilles
Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999), p. 793-820 / Harvested from Numdam
Publié le : 1999-01-01
@article{AIHPB_1999__35_6_793_0,
     author = {Blanchard, Gilles},
     title = {The ``progressive mixture'' estimator for regression trees},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {35},
     year = {1999},
     pages = {793-820},
     mrnumber = {1725711},
     zbl = {1054.62539},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_1999__35_6_793_0}
}
Blanchard, Gilles. The “progressive mixture” estimator for regression trees. Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) pp. 793-820. http://gdmltest.u-ga.fr/item/AIHPB_1999__35_6_793_0/

[1] Y. Amit and D. Geman, Shape quantization and recognition with randomized trees, Neural Computation 9 (1997) 1545-1588.

[2] Y. Amit, D. Geman and K. Wilder, Joint induction of shape features and tree classifiers, IEEE Trans. PAMI 19 (11) (1997) 1300-1306.

[3] A. Barron and Y. Yang, Information theoretic determination of minimax rates of convergence, Department of Statistics, Yale University, 1997.

[4] A.A. Barron, Are Bayes rules consistent in information? in: T.M. Cover and B. Gopinath (Eds.), Open Problems in Communication and Computation, Springer, Berlin, 1987, pp. 85-91.

[5] L. Birgé, Approximation dans les espaces métriques et théorie de l'approximation, Z. Wahrscheinlichkeitstheor. Verw. Geb. 65 (1983) 181-237. | MR 722129 | Zbl 0506.62026

[6] O. Catoni, "Universal" aggregation rules with exact bias bounds, Preprint of the Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999 (to appear in Annals of Statistics), 1999.

[7] H. Chipman, E.I. George and E. Mcculloch, Bayesian CART model search, JASA 93 (1998) 935-947.

[8] T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications, Wiley, New York, 1991. | MR 1122806 | Zbl 0762.94001

[9] L. Devroye and L. Györfi, Nonparametric Density Estimation: The L1 View, Wiley, New York, 1985. | MR 780746 | Zbl 0546.62015

[10] D. Helmbold and R. Shapire, Predicting nearly as well as the best pruning of a decision tree, Machine Learning 27 (1997) 51-68.

[11] F.M.J. Willems, Y.M. Shtarkov and T.J. Tjalkens, The context-tree weighting method: basic properties, IEEE Trans. Inform. Theory 41 (3) (1995) 653-664. | Zbl 0837.94011

[12] F.M.J. Willems, Y.M. Shtarkov and T.J. Tjalkens, Context weighting for general finite-context sources, IEEE Trans. Inform. Theory 42 (5) (1996) 1514- 1520. | Zbl 0860.94016