@article{AIHPB_1999__35_5_631_0,
author = {Bezuidenhout, Carol and Grimmett, Geoffrey},
title = {A central limit theorem for random walks in random labyrinths},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
volume = {35},
year = {1999},
pages = {631-683},
mrnumber = {1705683},
zbl = {0938.60033},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPB_1999__35_5_631_0}
}
Bezuidenhout, Carol; Grimmett, Geoffrey. A central limit theorem for random walks in random labyrinths. Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) pp. 631-683. http://gdmltest.u-ga.fr/item/AIHPB_1999__35_5_631_0/
[1] and , On the chemical distance for supercritical Bernoulli percolation, Ann. Probab. 24 (1996) 1036-1048. | MR 1404543 | Zbl 0871.60089
[2] , Transport properties of stochastic Lorentz models, Rev. Modern Phys. 54 (1982) 195-234. | MR 641369
[3] and , Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation, J. Statist. Phys. 31 (1982) 231-254. | MR 711477
[4] , Convergence of Probability Measures, Wiley, New York, 1968. | MR 233396 | Zbl 0172.21201
[5] and , Recurrence properties of Lorentz lattice gas cellular automata, J. Statist. Phys. 67 (1992) 289-302. | MR 1159466 | Zbl 0900.60103
[6] and , Density and uniqueness in percolation, Comm. Math. Phys. 121 ( 1989) 501-505. | MR 990777 | Zbl 0662.60113
[7] , New types of diffusions in lattice gas cellular automata, in: M. Mareschal and B.L. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamical Phenomena, Plenum Press, New York, 1991, pp. 137-152.
[8] and , New results for diffusion in Lorentz lattice gas cellular automata, J. Statist. Phys. 81 (1995) 445-466.
[9] and , Novel phenomena in Lorentz lattice gases, Physica A 219 (1995) 56-87.
[10] , , and , Invariance principle for reversible Markov processes with application to diffusion in the percolation regime, in: R.T. Durrett (Ed.), Particle Systems, Random Media and Large Deviations, Contemporary Mathematics No. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 71-85. | MR 814703 | Zbl 0571.60044
[11] , , and , An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys. 55 (1989) 787-855. | MR 1003538 | Zbl 0713.60041
[12] , Stochastic Processes, Wiley, New York, 1953. | MR 58896 | Zbl 0053.26802
[13] and , Random Walks and Electric Networks, Carus Mathematical Monograph No. 22, AMA, Washington, DC, 1984. | Zbl 0583.60065
[14] , Collected Scientific Papers, M.J. Klein (Ed.), North-Holland, Amsterdam, 1959. | Zbl 0089.18402
[15] and , Markov Processes, Characterization and Convergence, Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049
[16] , Antisymmetric functionals of reversible Markov processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 31 (1995) 177-190. | Numdam | MR 1340036 | Zbl 0813.60023
[17] , Percolation, Springer, Berlin, 1989. | Zbl 0691.60089
[18] , Percolation and disordered systems, in: P. Bernard (Ed.), Ecole d'Eté de Probabilités de Saint Flour XXVI-1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 153-300. | MR 1490045 | Zbl 0884.60089
[19] and , First-passage percolation, network flows and electrical networks, Z. Wahr. Ver. Geb. 66 (1984) 335-366. | MR 751574 | Zbl 0525.60098
[20] and , The supercritical phase of percolation is well behaved, Proc. Royal Society (London), Ser. A 430 (1990) 439-457. | MR 1068308 | Zbl 0711.60100
[21] , and , Random walks in random labyrinths, Markov Process Related Fields 2 (1996) 69-86. | MR 1418408 | Zbl 0879.60108
[22] , and , Invariance principle for the stochastic Lorentz lattice gas, J. Statist. Phys. 66 (1992) 1583-1598. | MR 1156416 | Zbl 0925.82148
[23] , Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. | Zbl 0522.60097
[24] and , Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058
[25] , and , Domination by product measures, Ann. Probab. 25 (1997) 71-95. | MR 1428500 | Zbl 0882.60046
[26] , The motion of electrons in metallic bodies, I, II, and III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences 7 (1905) 438-453, 585-593, 684-691.
[27] , Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields 104 (1996) 427-466. | MR 1384040 | Zbl 0842.60022
[28] , Infinite paths in a Lorentz lattice gas model, Probab. Theory Related Fields (1996), to appear. | MR 1701521 | Zbl 0932.60087
[29] , Persistent random walks in random environment, Probab. Theory Related Fields 71 (1986) 615-625. | MR 833271 | Zbl 0589.60099
[30] and , Diffusion in Lorentz lattice gas cellular automata: The honeycomb and quasi-lattices compared with the square and triangular lattices, J. Statist. Phys. 81 (1995) 467-495.
[31] , and , Lorentz lattice-gas and kinetic-walk model, Phys. Rev. A 44 (1991) 2410-2428.