Loading [MathJax]/extensions/MathZoom.js
Strong approximations of bivariate uniform empirical processes
Castelle, Nathalie ; Laurent-Bonvalot, Françoise
Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998), p. 425-480 / Harvested from Numdam
@article{AIHPB_1998__34_4_425_0,
     author = {Castelle, Nathalie and Laurent-Bonvalot, Fran\c coise},
     title = {Strong approximations of bivariate uniform empirical processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {34},
     year = {1998},
     pages = {425-480},
     mrnumber = {1632841},
     zbl = {0915.60048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_1998__34_4_425_0}
}
Castelle, Nathalie; Laurent-Bonvalot, Françoise. Strong approximations of bivariate uniform empirical processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) pp. 425-480. http://gdmltest.u-ga.fr/item/AIHPB_1998__34_4_425_0/

[1] Adler R.J. and Brown L.D., Tail of behaviour for suprema of empirical process. Annals of probability, Vol 14, 1986, pp. 1-30. | MR 815959 | Zbl 0596.62053

[2] Bennett G., Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., Vol. 57, 1962, pp. 33-45. | Zbl 0104.11905

[3] Bretagnolle J. and Massart P., Hungarian constructions from the non asymptotic view point. Annals of Probability, Vol 17, 1989, pp. 239-256. | MR 972783 | Zbl 0667.60042

[4] Brillinger D.R., The asymptotic representation of the sample distribution function. Bull. Amer. Math. Soc., Vol 75, 1969, pp. 545-547. | MR 243659 | Zbl 0206.20602

[5] Csörgö M. and Revesz P., Strong approximations in probability and statistics. Academic Press, 1981, New York. | MR 666546 | Zbl 0539.60029

[6] Csáki E., Investigations concerning the empirical distribution function. English translation in Selected Trans. Math. Statis. Probab., Vol 15, 1981, pp. 229-317. | Zbl 0478.62038

[7] Csörgö M. and Horváth L., Weighted Approximations in Probability and Statistics. Wiley & Sons, 1993. | Zbl 0770.60038

[8] Doob J.L., Stochastic process, Wiley, 1953, New York. | MR 58896 | Zbl 0053.26802

[9] Dvoretzky A., Kiefer J.C. and Wolfowitz J., Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., Vol. 33, 1956, pp. 642-669. | MR 83864 | Zbl 0073.14603

[10] Kieffer J., On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., Vol. 13, 1969, pp. 321-332. | MR 256461 | Zbl 0176.48201

[11] Kiefer J., Skorohod embedding of multivariate R. V.'s, and the sample D.F.Z. Z. Wahrschein. Verw. Geb., Vol. 24, 1972, pp. 1-35. | MR 341636 | Zbl 0267.60034

[12] Komlós J., Major P. and Tusnády, G., An approximation of partial sums of independent RV'- and the sample D. F. I. Z. Warschein. Verw. Geb., Vol. 32, 1975, pp. 111-131. | MR 375412 | Zbl 0308.60029

[13] Mason D., A strong invariance theorem for the tail empirical process. Annales de l'I.H.P., Vol. 24, 1988. | Numdam | MR 978022 | Zbl 0664.60038

[14] Mason D. and Van Zwet R., A refinement of the KMT inequality for the uniform empirical process. Annals of Probability, Vol. 15, 1987, pp. 871-884. | MR 893903 | Zbl 0638.60040

[15] Massart P., The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. Annals of Probability, Vol. 18, 1990, pp.1269-1283. | MR 1062069 | Zbl 0713.62021

[16] Shorack G.R. and Wellner J.A., Empirical processes with applications to statistics. Wiley & Sons, 1986.

[17] Skorohod A.V., On a representation of random variables. Th. Proba. Appl., Vol. 21, 1976, pp. 628-632. | MR 428369 | Zbl 0362.60004

[18] Talagrand M., Sharper bounds for empirical process. Annals of Probability, Vol. 22, 1994, pp. 28-76. | MR 1258865 | Zbl 0798.60051

[19] Tusnady G., A remark on the approximation of the sample D.F. in the multidimensional case. Periodica Math. Hung., Vol. 8, 1977, pp. 53-55. | MR 443045 | Zbl 0386.60006

[20] Wellner J., Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., Vol. 45, 1978, pp. 73-88. | MR 651392 | Zbl 0382.60031