@article{AIHPB_1998__34_1_139_0, author = {Assani, I.}, title = {A weighted pointwise ergodic theorem}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {34}, year = {1998}, pages = {139-150}, mrnumber = {1617709}, zbl = {0902.28011}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1998__34_1_139_0} }
Assani, I. A weighted pointwise ergodic theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) pp. 139-150. http://gdmltest.u-ga.fr/item/AIHPB_1998__34_1_139_0/
[1] Strong laws for weighted sums of independently identically distributed random variables, Duke Mathematical Journal, Vol. 88, 1997, pp. 217-246. | MR 1455518 | Zbl 0883.60023
,[2] Return times of dynamical systems Appendix to J. Bourgain, Pointwise Ergodic Theorems for Arithmetic Sets, I.H.E.S., Vol. 69, 1989, pp. 5-45. | Numdam | MR 1019960 | Zbl 0705.28008
, , and ,[3] Convergence for moving averages, Ergod. Th. & Dynam. Sys., Vol. 10, 1990, pp. 43-62. | Zbl 0674.60035
, and ,[4] The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 307-345. | MR 773063 | Zbl 0619.47004
and ,[5] Some properties of trigonometric series whose terms have random signs, Acta. Math., Vol. 91, 1954, pp. 245-301. | MR 65679 | Zbl 0056.29001
and ,