On the multiplicative ergodic theorem for uniquely ergodic systems
Furman, Alex
Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997), p. 797-815 / Harvested from Numdam
@article{AIHPB_1997__33_6_797_0,
     author = {Furman, Alex},
     title = {On the multiplicative ergodic theorem for uniquely ergodic systems},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {33},
     year = {1997},
     pages = {797-815},
     mrnumber = {1484541},
     zbl = {0892.60011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_1997__33_6_797_0}
}
Furman, Alex. On the multiplicative ergodic theorem for uniquely ergodic systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) pp. 797-815. http://gdmltest.u-ga.fr/item/AIHPB_1997__33_6_797_0/

[1] J.E. Cohen, H. Kesten and M. Newman (editors), Oseledec's multiplicative ergodic theorem: a proof, Contemporary Mathematics, Vol. 50, 1986, pp. 23-30. | Zbl 0607.60026

[2] H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Stat., Vol. 31, 1960, pp. 457-489. | MR 121828 | Zbl 0137.35501

[3] E. Glasner and B. Weiss, On the construction of minimal skew-products, Israel J. Math., Vol. 34, 1979, pp. 321-336. | MR 570889 | Zbl 0434.54032

[4] M.R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergod. Th. and Dyn. Sys., Vol. 1, No. 1, 1981, pp. 65-76. | MR 627787 | Zbl 0469.58008

[5] Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems, Israel J. Math., Vol. 42, No. 4, 1982, pp. 291-296. | MR 682312 | Zbl 0546.28013

[6] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Stat. Soc., Vol. B30, 1968, pp. 499-510. | MR 254907 | Zbl 0182.22802

[7] O. Knill, The upper Lyapunov exponent of SL2(R) cocycles: discontinuity and the problem of positivity, in Lecture Notes in Math., Vol. 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 86-97. | MR 1178949 | Zbl 0746.58050

[8] O. Knill, Positive Lyapunov exponents for a dense set of bounded measurable SL2 (R)- cocycles, Ergod. Th. and Dyn. Syst., Vol. 12, No.2, 1992, pp. 319-331. | MR 1176626 | Zbl 0759.58025

[9] M.G. Nerurkar, Typical SL2 (R) valued cocycles arising from strongly accessible linear differential systems have non-zero Lyapunov exponents, preprint.

[10] V.I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., Vol. 19, 1968, pp. 197-231. | MR 240280 | Zbl 0236.93034

[11] P. Walters, Unique ergodicity and matrix products, in Lecture Notes in Math., Vol 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 37-56. | Zbl 0604.60011