@article{AIHPB_1997__33_4_497_0, author = {H\"aggstr\"om, Olle and Peres, Yuval and Steif, Jeffrey E.}, title = {Dynamical Percolation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {33}, year = {1997}, pages = {497-528}, mrnumber = {1465800}, zbl = {0894.60098}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1997__33_4_497_0} }
Häggström, Olle; Peres, Yuval; Steif, Jeffrey E. Dynamical Percolation. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) pp. 497-528. http://gdmltest.u-ga.fr/item/AIHPB_1997__33_4_497_0/
[1] Simultaneous uniqueness of infinite clusters in stationary random labeled graphs, Commun. Math. Phys., Vol. 168, 1995, pp. 39-55. | MR 1324390 | Zbl 0827.60080
,[2] Branching Processes, Springer-Verlag, New York, 1972. | MR 373040 | Zbl 0259.60002
and ,[3] Mathematical Theory of Reliability, Wiley, New York, 1965. | MR 195566 | Zbl 0132.39302
and ,[4] Martin capacity for Markov chains, Ann. Probab., Vol. 23, 1995, pp. 1332-1346. | MR 1349175 | Zbl 0840.60068
, and ,[5] Random Walks and Electric Networks, Mathematical Assoc. of America, Washington, D. C., 1984. | MR 920811 | Zbl 0583.60065
and ,[6] Markov Processes-Characterization and Convergence, John Wiley & Sons, New York., 1986. | Zbl 0592.60049
and ,[7] An Introduction to Probability Theory and its Applications, Volume 2. John Wiley and Sons: New York, 1966. | MR 210154 | Zbl 0138.10207
,[8] Potential d'équilibre et capacité des ensembles, Thesis, Lund, 1935.
,[9] Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan, Vol. 36, 1984, pp. 161-175. | MR 723601 | Zbl 0522.60081
,[10] Percolation, Springer-Verlag, New York, 1989. | MR 995460 | Zbl 0691.60089
,[11] Mean field behavior and the lace expansion, in Probability Theory and Phase Transitions, (ed. G. Grimmett), Proceedings of the NATO ASI meeting in Cambridge 1993, Kluwer, 1994. | MR 1283177 | Zbl 0831.60107
and ,[12] A correlation inequality for Markov processes in partially ordered spaces, Ann. Probab., Vol. 5, 1977, pp. 451-454. | MR 433650 | Zbl 0381.60072
,[13] Some random series of functions, Second edition, Cambridge University Press: Cambridge, 1985. | MR 833073 | Zbl 0571.60002
,[14] The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., Vol. 74, 1980, pp. 41-59. | MR 575895 | Zbl 0441.60010
,[15] Scaling relations for 2D-percolation, Commun. Math. Phys., Vol. 109, 1987, pp. 109-156. | MR 879034 | Zbl 0616.60099
,[16] Strict inequalites for some critical exponents in 2D-percolation, J. Statist. Phys., Vol. 46, 1987, pp. 1031-1055. | MR 893131 | Zbl 0683.60081
and ,[17] Some properties of planar Brownian motion, École d'été de probabilités de Saint-Flour XX, Lecture Notes in Math., Vol. 1527, 1992, pp. 111-235. Springer, New York. | MR 1229519 | Zbl 0779.60068
,[18] Interacting Particle Systems, Springer, New York, 1985. | MR 776231 | Zbl 0559.60078
,[19] Random walks and percolation on trees, Ann. Probab., Vol. 18, 1990, pp. 931-958. | MR 1062053 | Zbl 0714.60089
,[20] Random walks, capacity, and percolation on trees, Ann. Probab., Vol. 20, 1992, pp. 2043-2088. | MR 1188053 | Zbl 0766.60091
,[21] Critical random walk in random environment on trees, Ann. Probab., Vol. 23, 1995a, pp. 105-140. | MR 1330763 | Zbl 0837.60066
and ,[22] Galton-Watson trees with the same mean have the same polar sets, Ann. Probab., Vol. 23, 1995b, pp. 1102-1124. | MR 1349163 | Zbl 0833.60085
and ,[23] On the existence of self-intersections for quasi-every Brownian path in space, Ann. Probab., Vol. 17, 1989, pp. 482-502. | MR 985374 | Zbl 0714.60067
,[24] Intersection-equivalence of Brownian paths and certain branching processes, Commun. Math. Phys., Vol. 177, 1996, pp. 417-434. | MR 1384142 | Zbl 0851.60080
,[25] Markov Processes. Structure and Asymptotic Behavior, Springer, New York, 1971. | MR 329037 | Zbl 0236.60002
,[26] Covering the circle with random arcs, Israel J. Math., Vol. 11, 1972, pp. 328-345. | MR 295402 | Zbl 0241.60008
,