@article{AIHPB_1997__33_3_323_0,
author = {Katok, Anatole and Thouvenot, Jean-Paul},
title = {Slow entropy type invariants and smooth realization of commuting measure-preserving transformations},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
volume = {33},
year = {1997},
pages = {323-338},
mrnumber = {1457054},
zbl = {0884.60009},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPB_1997__33_3_323_0}
}
Katok, Anatole; Thouvenot, Jean-Paul. Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) pp. 323-338. http://gdmltest.u-ga.fr/item/AIHPB_1997__33_3_323_0/
[1] , Monotone equivalence in ergodic theory, Math. USSR, Izvestija, Vol. 11, 1977, pp. 99-146. | MR 442195 | Zbl 0379.28008
[2] , Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math IHES, Vol 51, 1980, pp. 137-173. | Numdam | MR 573822 | Zbl 0445.58015
[3] , Constructions in ergodic theory, preprint.
[4] and , Introduction to the modern theory of dynamical systems, Cambridge University Press, New York, 1995. | MR 1326374 | Zbl 0878.58020
[5] , An estimate from above for the topological entropy of a diffeomorphism, Global theory of Dynamical systems, Lecture Note Math., Vol. 819, Springer Verlag, 1980, pp. 258-266. | MR 591188 | Zbl 0448.58010
[6] , An upper bound of the entropy of classical dynamical systems, Sov. Math. Dokl., Vol. 6, 1965, pp. 360-362. | Zbl 0136.42905
[7] and , Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory, Vol. 11, 1977, pp. 275-285. | MR 584588 | Zbl 0377.28011
[8] and , Isomorphism theorem for amenable group actions, J. Anal. Math., Vol. 48, 1987, p. 1-141. | MR 910005 | Zbl 0637.28015
[9] , Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, Vol. 32, 1977, pp. 55-114. | MR 466791 | Zbl 0383.58011
[10] , An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Math., Vol. 9, 1978, pp. 83-87. | MR 516310 | Zbl 0432.58013