@article{AIHPB_1997__33_1_83_0, author = {Pruss, Alexander R.}, title = {One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {33}, year = {1997}, pages = {83-112}, mrnumber = {1440257}, zbl = {0870.60066}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1997__33_1_83_0} }
Pruss, Alexander R. One-dimensional random walks, decreasing rearrangements and discrete Steiner symmetrization. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) pp. 83-112. http://gdmltest.u-ga.fr/item/AIHPB_1997__33_1_83_0/
[1] A unified approach to symmetrization, Partial Differential Equations of Elliptic Type, A. ALVINO, et al., Eds. Symposia Mathematica, Cambridge University Press, Cambridge, Vol. 35, 1994, pp. 47-91. | MR 1297773 | Zbl 0830.35005
,[2] Integral means, univalent functions and circular symmetrization, Acta Math., Vol. 133, 1974, pp. 139-169. | MR 417406 | Zbl 0315.30021
,[3] An inequality for a class of harmonic functions in n-space (Appendix) The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. | MR 466587
,[4] A theorem on convex sequences, Analysis, Vol. 2, 1982, pp. 231-252. | MR 732333 | Zbl 0494.26008
,[5] The cosπλ theorem, Lecture Notes in Mathematics, Springer-Verlag, New York, Vol. 467, 1975. | MR 466587 | Zbl 0335.31001
,[6] Estimates of harmonic measures, Ark. Mat., Vol. 6, 1965, pp. 1-31. | MR 201665 | Zbl 0178.13801
,[7] Notes on the theory of series (VIII): an inequality, J. Lond. Math. Soc., Vol. 3, 1928, pp. 105-110. | JFM 54.0226.02
and ,[8] Inequalities, Cambridge University Press, 1964.
, and ,[9] Radial rearrangement, harmonic measures and extensions of Beurling's shove theorem, Preprint, 1966.
,[10] Discrete harmonic measure, Green's functions and symmetrization: a unified probabilistic approach, Preprint, 1996.
,[11] Symmetrization inequalities for discrete harmonic functions, Preprint.
,