Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume
Landim, C. ; Mourragui, M.
Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997), p. 65-82 / Harvested from Numdam
Publié le : 1997-01-01
@article{AIHPB_1997__33_1_65_0,
     author = {Landim, Claudio and Mourragui, Mustapha},
     title = {Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {33},
     year = {1997},
     pages = {65-82},
     mrnumber = {1440256},
     zbl = {0870.60098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_1997__33_1_65_0}
}
Landim, C.; Mourragui, M. Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) pp. 65-82. http://gdmltest.u-ga.fr/item/AIHPB_1997__33_1_65_0/

[1] A. Andjel, Invariant measures for the zero range process, Ann. Probab., Vol. 10, 1982, pp. 525-547. | MR 659526 | Zbl 0492.60096

[2] H. Brézis and M.G. Crandall, Uniqueness of solutions of the initial-value problem for ut - Δφ(u) = 0, J. Math. Pures et appl., Vol. 58, 1979, pp. 153-163. | MR 539218 | Zbl 0408.35054

[3] A. De Masi, P. Ferrari and J. Lebowitz, Reaction diffusion equations for interacting particle systems, J. Stat. Phys., Vol. 55, 1986, pp. 523-578. | Zbl 0629.60107

[4] J. Fritz, On the hydrodynamic limit of a one dimensional Ginzburg-Landau lattice model: the a priori bounds, J. Stat. Phys., Vol. 47, 1987, pp. 551-572. | MR 894407 | Zbl 0681.76089

[5] J. Fritz, On the hydrodynamic limit of a Ginzburg-Landau lattice model, Prob. Th. Rel Fields, Vol. 81, 1989, pp. 291-318. | MR 982659 | Zbl 0665.60108

[6] J. Fritz, On the diffusive nature of the entropy flow in finite systems: remarks to a paper by Guo-Papanicolaou-Varadhan, Commun. Math. Phys., 133, 1990, pp. 331-352. | MR 1090429 | Zbl 0719.60122

[7] M.Z. Guo, Papanicolaou G.C. and S.R.S. Varaohan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., Vol. 118, 1988, pp. 31-59. | MR 954674 | Zbl 0652.60107

[8] A. Galves, C. Kipnis, C. Marchioro and E. Presutti, Nonequilibrium measures which exhibit a temperature gradient: study of a model, Commun. Math. Phys., Vol. 81, 1981, pp. 127-148. | MR 630334 | Zbl 0465.60089

[9] H. Rost Nonequilibrium behavior of many particle systems: density profile and local equilibria. Z. Wahrs. Verw. Gebiete, Vol. 58, 1981, pp. 41-53. | MR 635270 | Zbl 0451.60097

[10] H. Spohn, Large Scale Dynamics of Interacting Particle Systems, Text and Monographs in Physics, Springer-Verlag, New York, 1991. | Zbl 0742.76002

[11] D. Wick, Entropy arguments in the study of hydrodynamic limits, CARR Reports in Mathematical Physics 3/88.

[12] H.T. Yau, Metastability of Ginzburg-Landau model with a conservation law, J. Stat. Phys., Vol. 74, 1994, pp. 705-742. | MR 1263386 | Zbl 0834.35120