@article{AIHPB_1996__32_2_231_0, author = {Castell, Fabienne and Gaines, Jessica}, title = {The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {32}, year = {1996}, pages = {231-250}, mrnumber = {1386220}, zbl = {0851.60054}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1996__32_2_231_0} }
Castell, Fabienne; Gaines, Jessica. The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) pp. 231-250. http://gdmltest.u-ga.fr/item/AIHPB_1996__32_2_231_0/
[1] Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynmann, in Séminaire de Probabilités XVI, Supplément: Géométrie différentielle stochastique, Springer-Verlag, 1980/81, pp. 237-284. | Numdam | MR 658728 | Zbl 0484.60064
,[2] On the connection between the Malliavin covariance matrix and Hörmander's condition, Journal of Functional Analysis, Vol. 96, 1991, pp. 219-255. | MR 1101258 | Zbl 0726.60056
,[3] Flots et séries de Taylor stochastiques, Probab. Theory Related Fields, Vol. 81, 1989, pp. 29-77. | MR 981567 | Zbl 0639.60062
,[4] Asymptotic expansion of stochastic flows, Probab. Theory Related Fields, Vol. 96, 1993, pp. 225-239. | MR 1227033 | Zbl 0794.60054
,[5] An efficient approximation for a class of stochastic differential equations, in Advances in filtering and optimal stochastic control, Proceedings of IFIP-WG7/1 Working Conference, Cocoyoc, Mexico, 1982, W. H. Fleming and L. G. Gorostiza, eds., no. 42 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1982. | MR 794499 | Zbl 0507.93072
,[6] The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems, B. Grigelionis, ed., no. 25 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1980. | MR 609181
and ,[7] The algebra of iterated stochastic integrals. To appear in Stochastics and Stochastic Reports. | MR 1785003 | Zbl 0827.60038
,[8] Random generation of stochastic area integrals. To appear in SIAM J. of Applied Math. | MR 1284705 | Zbl 0805.60052
and ,[9] Série de Taylor stochastique et formule de Campbell-Haussdorff, d'après Ben Arous, in Séminaire de Probabilités XXV, J. Azema, P. A. Meyer, and M. Yor, eds., no. 1485 in Lecture Notes in Mathematics, Springer-Verlag, 1991/92, pp. 579-586. | Numdam | MR 1232020 | Zbl 0766.60069
,[10] Stratonovich and Itô stochastic Taylor expansions, Math. Nachr., Vol. 151, 1991, pp. 33-50. | MR 1121195 | Zbl 0731.60050
and ,[11] Numerical Solution of Stochastic Differential Equations, Vol. 23 of Applications of Mathematics, Springer-Verlag, 1992. | MR 1214374 | Zbl 0752.60043
and ,[12] An asymptotically efficient difference formula for solving stochastic differential equations, Stochastics, Vol. 19, 1986, pp. 175-206. | MR 870619 | Zbl 0618.60053
,[13] Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations, SIAM J. of Applied Mathematics, Vol. 51, 1991, pp. 542-567. | MR 1095034 | Zbl 0724.65135
,[14] Discretization and simulation of stochastic differential equations, Acta Appl. Math., Vol. 3, 1985, pp. 23-47. | MR 773336 | Zbl 0554.60062
and ,[15] Diffusions, Markov Processes and Martingales 2, Itô Calculus, John Wiley and Sons, 1987. | MR 921238 | Zbl 0627.60001
and ,[16] Simulation and numerical analysis of stochastic differential systems: A review, Tech. Report 1313, INRIA, 1990.
,