@article{AIHPB_1995__31_1_249_0, author = {Newman, C. M. and Stein, D. L.}, title = {Random walk in a strongly inhomogeneous environment and invasion percolation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {31}, year = {1995}, pages = {249-261}, mrnumber = {1340039}, zbl = {0817.60097}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1995__31_1_249_0} }
Newman, C. M.; Stein, D. L. Random walk in a strongly inhomogeneous environment and invasion percolation. Annales de l'I.H.P. Probabilités et statistiques, Tome 31 (1995) pp. 249-261. http://gdmltest.u-ga.fr/item/AIHPB_1995__31_1_249_0/
[1] The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes, SIAM J. Appl. Math., Vol. 45, 1985, pp. 972-982. | MR 813459 | Zbl 0592.60063
and ,[2] Neo-darwinian evolution implies punctuated equilibria, Nature, Vol. 315, 1985, pp. 400-401.
, and ,[3] Broken ergodicity in glass, in Relaxation in Complex Systems, ed. K. L. Ngai and G. B. Wright, U.S. GPO, Washington, 1985, pp. 253-259.
and ,[4] Models of hierarchically constrained dynamics for glassy relaxation, Phys. Rev. Lett., Vol. 53, 1984, pp. 958-961.
, , and ,[5] Dynamics on ultrametric spaces, Phys. Rev. Lett., Vol. 55, 1985, pp. 1634-1637. | MR 804582
and ,[6] On the glass transition and the residual entropy of glasses, Philos. Mag., Vol. B44, 1981, pp. 533-545.
,[7] Broken ergodicity, Adv. Phys., Vol. 31, 1982, pp. 669-735.
,[8] Droplet dynamics for asymmetric Ising model, J. Stat. Phys., Vol. 70, 1993, pp. 1121-1148. | MR 1208633 | Zbl 1081.82591 | Zbl 01261826
and ,[9] Shapes of growing droplets - a model of escape from a metastable phase, J. Stat. Phys., Vol. 75, 1994, pp. 409-506. | MR 1279759 | Zbl 0831.60103
and ,[10] Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case, preprint, 1994. | MR 1327899
and ,[11] Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam/New York, chap. 11, 1981. | Zbl 0511.60038
,[12] Handbook of Stochastic Methods, Springer-Verlag, New York/Berlin, chap. 9, 1983. | MR 714148 | Zbl 0515.60002
,[13] Random Perturbations of Dynamical Systems, Springer-Verlag, New York/Berlin, chaps. 4 & 6, 1984.
and ,[14] Metastable behavior of stochastic dynamics: a pathwise approach, J. Stat. Phys., Vol. 35, 1984, pp. 603-634. | MR 749840 | Zbl 0591.60080
, , and ,[ 15] Metastability for a class of dynamical systems subject to small random perturbations, Ann. Prob., Vol. 15, 1987, pp. 1288-1305. | MR 905332 | Zbl 0709.60058
, and ,[16] Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times, J. Stat. Phys., Vol. 55, 1989, pp. 477-504. | MR 1003525 | Zbl 0714.60109
, , and ,[17] Description d'un mécanisme de connexion de liaison destiné à l'étude du drainage avec piégeage en milieu poreux, C.R. Acad. Sci. Paris Sér. B, Vol. 291, 1980, pp. 279-282.
and ,[18] Capillary displacement and percolation in porous media, J. Fluid Mech., Vol. 119, 1982, pp. 249-267. | Zbl 0491.76090
, , and ,[19] Invasion percolation: a new form of percolation theory, J. Phys. A, Vol. 16, 1983, pp. 3365-3376. | MR 725616
and ,[20] The stochastic geometry of invasion percolation, Comm. Math. Phys., Vol. 101, 1985, pp. 383-407. | MR 815191
, and ,[21] Spin glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett., Vol. 72, 1994, pp. 2286-2289.
and ,[22] Geometric bounds for eigenvalues of Markov chains, Ann. Applied Prob., Vol. 1, 1991, pp. 36-61. | MR 1097463 | Zbl 0731.60061
and ,