Random ergodic theorems with universally representative sequences
Lacey, Michael ; Petersen, Karl ; Wierdl, Mate ; Rudolph, Dan
Annales de l'I.H.P. Probabilités et statistiques, Tome 30 (1994), p. 353-395 / Harvested from Numdam
@article{AIHPB_1994__30_3_353_0,
     author = {Lacey, Michael and Petersen, Karl and Wierdl, Mate and Rudolph, Dan},
     title = {Random ergodic theorems with universally representative sequences},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {30},
     year = {1994},
     pages = {353-395},
     mrnumber = {1288356},
     zbl = {0813.28004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_1994__30_3_353_0}
}
Lacey, Michael; Petersen, Karl; Wierdl, Mate; Rudolph, Dan. Random ergodic theorems with universally representative sequences. Annales de l'I.H.P. Probabilités et statistiques, Tome 30 (1994) pp. 353-395. http://gdmltest.u-ga.fr/item/AIHPB_1994__30_3_353_0/

[1] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288, 1985, p. 307-345. | MR 773063 | Zbl 0619.47004

[2] A. Bellow, R.L. Jones and J. Rosenblatt, Almost everywhere convergence of weighted averages, Math. Ann., 293, 1992, p. 399-426. | MR 1170516 | Zbl 0736.28008

[3] V. Bergelson, M. Boshernitzan and J. Bourgain, Some results on non-linear recurrence, Preprint. | Zbl 0803.28011

[4] N.H. Bingham and Ch. M. Goldie, Probabilistic and deterministic averaging, Trans. Amer. Math. Soc., 269, 1982, p. 453-480. | MR 637702 | Zbl 0477.60032

[5] J.R. Blum and R. Cogburn, On ergodic sequences of measures, Proc. Amer. Math. Soc., 51, 1975, p. 359-365. | MR 372529 | Zbl 0309.43001

[6] J. Bourgain, On the maximal ergodic theorem for certain substets of the integers, Israel J. Math., 61, 1988, p. 39-72. | MR 937581 | Zbl 0642.28010

[7] J. Bourgain, An approach to pointwise ergodic theorems, Springer Lecture Notes in Math., 1317, 1988, p. 204-223. | MR 950982 | Zbl 0662.47006

[8] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, Return times of dynamical systems, appendix to Pointwise ergodic theorems for arithmetic sets, by J. Bourgain, Pub. Math. I.H.E.S., 69, 1989, p. 5-45. | Numdam | MR 1019960 | Zbl 0705.28008

[9] A. Del Junco and J. Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann., 245, 1979, p. 185-197. | MR 553340 | Zbl 0398.28021

[10] R. Durrett, Probability theory and examples, Wadsworth & Brooks/Cole, Belmont, CA, 1991, p. 394. | Zbl 0709.60002

[11] P. Hall and C.C. Heyde, Martingale limit theory and its applications, Academic Press, New York, 1980. | MR 624435 | Zbl 0462.60045

[12] R. Jones, J. Olsen and M. Wierdl, Subsequence ergodic theorems for LP contractions, Trans. Amer. Math. Soc., To appear. | MR 1043860 | Zbl 0786.47005

[13] R. Jones and M. Wierdl, Examples of a.e. convergence and divergence of ergodic averages, Preprint. | MR 1293406

[14] L. Meilijson, The average of the value of a function at random points, Israel J. Math., 15, 1973, p. 193-203. | MR 329010 | Zbl 0275.60069

[15] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge and New York, 1983 and 1989. | MR 833286 | Zbl 0507.28010

[16] K. Petersen, On a series of cosecants related to a problem in ergodic theory, Comp. Math., 26, 1973, p. 313-317. | Numdam | MR 325927 | Zbl 0269.10030

[17] M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math., 64, 1988, p. 315-336. | MR 995574 | Zbl 0695.28007