@article{AIHPB_1989__25_1_1_0, author = {De Masi, Anna and Presutti, Errico and Scacciatelli, E.}, title = {The weakly asymmetric simple exclusion process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {25}, year = {1989}, pages = {1-38}, mrnumber = {995290}, zbl = {0664.60110}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1989__25_1_1_0} }
De Masi, A.; Presutti, E.; Scacciatelli, E. The weakly asymmetric simple exclusion process. Annales de l'I.H.P. Probabilités et statistiques, Tome 25 (1989) pp. 1-38. http://gdmltest.u-ga.fr/item/AIHPB_1989__25_1_1_0/
[1] Shocks in the Asymmetric Exclusion Process, Preprint 1986. | MR 945111
, and ,[2] Derivation of the Hydrodynamical Equation for the Zero Range Interaction Process, Annals of probability, Vol. 12, 1984, pp. 325-334. | MR 735841 | Zbl 0536.60097
and ,[3] Hydrodynamic Equations for Attractive Particle Systems on Z, J. Stat. Phys., Vol. 47, 1987, pp. 265-288. | MR 892931 | Zbl 0685.58043
and ,[4]
, , and . In preparation.[5] Hydrodynamic Limit for the Asymmetric Simple Exclusion Process, Annals of Probability, Vol. 15, 1987, pp. 546-560. | MR 885130 | Zbl 0623.60120
and ,[6] Propagation of Chaos for Burgers Equation, Ann. Inst. Poincaré, Sect. A, Phys. Theor., Vol. 29, 1983, pp. 85-97. | Numdam | MR 715133 | Zbl 0526.60057
and ,[7] Rigorous Derivation of Reaction Diffusion Equations with Fluctuations, Phys. Rev. Letters, Vol. 55, 19, 1947, 1985. MASI, and , Reaction Diffusion Equations for Interacting Particle Systems, J. Stat. Phys., Vol. 44, 1986, p. 589. | MR 811605
MASI, and ,[8] An Interface Model Related to Burgers Equation, ITP report, October 1987.
MASI, and ,[9] Microscopic Structure at the Shock in the Asymmetric Simple Exclusion, Preprint, May 1987.
, , and ,[10] A Survey of the Hydrodynamical Behaviour of Many Particle Systems, in Non Equilibrium Phenomena, Vol. 11, J. L. LEBOWITZ and E. W. MONTROLL Eds., North Holland 1984. | Zbl 0567.76006
, , and ,[11] The Simple Exclusion Process as Seen from a Tagged Particle. Annals of probability, Vol. 14, 1986, pp. 1277-1290. | MR 866349 | Zbl 0628.60103
,[12] The Symmetric Simple Exclusion Process. I, probability estimates, I.T.P. preprint, September 1987. | MR 917245
, , and ,[13] Non Equilibrium Fluctuations for a One-Dimensional Zero Range Process, Ann. Inst. Henri Poincaré, Vol. 24, No. 2, 1988, pp. 237-268. | Numdam | MR 953119 | Zbl 0653.60099
, and ,[14] On the Hydrodynamical Limit of aa One Dimensional Ginzburg Landau Lattice Model: the Resolvent Equation Approach; J. FRITZ, On the Hydrodynamical Limit of a One Dimensional Ginzburg Landau Lattice Model: the a priori Bounds.
,[15]
and , In preparation.[16] Convergence Towards Burger's Equation and Propagation of Chaos for Weakly Asymmetric Exclusion Processes, Preprint, 1987. | MR 931030
,[17] Non Linear Diffusion Limit for a System with Nearest Neighbor Interactions, Preprint, November, 1987.
, and ,[18] Generalized Ornstein-Uhlenbeck Processes and Infinite Branching Brownian Motions, Kyoto Univ. Res. Inst. Math. Sci. Publ., A 14, 1978, p. 741. | MR 527199 | Zbl 0412.60065
and ,[19]
, and , In preparation.[20] Interacting Particle Systems, Sringer-Verlag, 1985. | MR 776231 | Zbl 0559.60078
,[21] A Cellular Automaton for Burgers Equation, Complex Systems, Vol. 1, 1987, pp. 17-30. | MR 891510 | Zbl 0659.65119
and ,[22] Propagation of Chaos for a Class of Parabolic Equations. Lectures series in Diff. Eq. (Catholic Univ.), 1967, pp. 41-57. | MR 233437
,[23] Sufficient Conditions for tightness and Weak Convergence of a Sequence of Processes, Internal Report, Univ. of Minnesota, 1980.
,[24] Collective Behaviour of Interacting Particle Systems, Proceedings of the I Bernoulli Congress, Tashkent, Sept. 1986 (to appear). | MR 1092379 | Zbl 0679.60096
,[25] Non Equilibrium Behavior of Many Particle Process: Density Profiles and Local Equilibria, Z. Wahrsch. Verw. Gebiete, Vol. 58, 1981, pp. 41-53. | Zbl 0451.60097
,[26] Shock Waves and Reaction Diffusion Equations, Springer-Verlag, 1983. | MR 688146 | Zbl 0508.35002
,[27]
and , In preparation.[28] A Propagation of Chaos Result for Burger's Equation, Prob. Th. Rel. Fields, Vol. 71, 1986, pp. 581-613. | MR 833270 | Zbl 0597.60055
,[29] A Dynamical Phase Transition in an Infinite Particle System, J. Stat. Phys., Vol. 38, 1985, pp. 1005-1025. | MR 802566 | Zbl 0625.76080
,