Processus de saut avec interaction selon les plus proches particules
Roussignol, M.
Annales de l'I.H.P. Probabilités et statistiques, Tome 22 (1986), p. 175-198 / Harvested from Numdam
Publié le : 1986-01-01
@article{AIHPB_1986__22_2_175_0,
     author = {Roussignol, Michel},
     title = {Processus de saut avec interaction selon les plus proches particules},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {22},
     year = {1986},
     pages = {175-198},
     mrnumber = {850755},
     zbl = {0621.60115},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIHPB_1986__22_2_175_0}
}
Roussignol, M. Processus de saut avec interaction selon les plus proches particules. Annales de l'I.H.P. Probabilités et statistiques, Tome 22 (1986) pp. 175-198. http://gdmltest.u-ga.fr/item/AIHPB_1986__22_2_175_0/

[1] E. Andjel, C. Cocozza-Thivent, M. Roussignol, Quelques compléments sur le processus des misanthropes et le processus « zero range ». Ann. Inst. H. Poincaré, t. 21, n° 4, 1985, p. 363-382. | Numdam | MR 823081 | Zbl 0581.60093

[2] G. Choquet, J. Deny, Sur l'équation de convolution μ = μ*σ. C. R. A. S., t. 250, 1960, p. 799-801. | MR 119041 | Zbl 0093.12802

[3] C. Cocozza-Thivent, Processus des misanthropes. Z. f. W., t. 70, 1985, p. 509- 523. | MR 807334 | Zbl 0554.60097

[4] H.O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics, n° 760.

[5] H.O. Georgii, Equilibria for particle motions; conditionnally balanced point random fields. G. Koch, F. Spizzichino (eds.). Exchangeability in probability and statistics. North Holland, Amsterdam, 1982. | MR 675981 | Zbl 0495.60054

[6] R.A. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys., t. 23, 1971, p. 87-99. | MR 292449 | Zbl 0241.60096

[7] R.A. Holley et D.W. Stroock, In one and two dimensions every stationary-measure for a stochastic Ising model is a Gibbs state. Comm. Math. Phys., t. 55, 1977, p. 37-45. | MR 451455

[8] T.M. Liggett, The stochastic evolution of infinite systems for interacting particles. Lecture Notes in Mathematics, n° 598. | MR 458647 | Zbl 0363.60109

[9] T.M. Liggett, Interacting particle systems. Springer. | MR 2108619 | Zbl 0559.60078

[10] T.M. Liggett, Attractive nearest particle systems. Annals of probability, t. 11, 1983, n° 1, p. 16-33. | MR 682797 | Zbl 0508.60081

[11] F. Spitzer, Stochastic time evolution of one dimensional inimite particle system. B. A. M. S., t. 83, n° 5, 1977, p. 880-890. | MR 448632 | Zbl 0372.60149