@article{AIHPB_1983__19_2_189_0, author = {Berman, Simeon M.}, title = {Local nondeterminism and local times of general stochastic processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {19}, year = {1983}, pages = {189-207}, mrnumber = {700709}, zbl = {0516.60047}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1983__19_2_189_0} }
Berman, Simeon M. Local nondeterminism and local times of general stochastic processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) pp. 189-207. http://gdmltest.u-ga.fr/item/AIHPB_1983__19_2_189_0/
[1] The Geometry of Random Fields, John Wiley and Sons, New York, 1981. | MR 611857 | Zbl 0478.60059
,[2] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc., t. 137, 1969, p. 277-299. | MR 239652 | Zbl 0184.40801
,[3] Gaussian processes with stationary increments: local times and sample function properties. Ann. Math. Statist., t. 41, 1970, p. 1260-1272. | MR 272035 | Zbl 0204.50501
,[4] Gaussian sample functions: uniform dimension and Holder conditions nowhere. Nagoya Math., J., t. 46, 1972, p. 63-86. | MR 307320 | Zbl 0246.60038
,[5] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., t. 23, 1973, p. 69-94. | MR 317397 | Zbl 0264.60024
,[6] Local times of stochastic processes with positive definite bivariate densities, Stochastic Processes Appl., t. 12, 1982, p. 1-26. | MR 632390 | Zbl 0471.60082
,[7] Local times of stochastic processes which are subordinate to Gaussian processes. J. Multivariate Anal., t. 12, 1982, p. 317-334. | MR 666009 | Zbl 0502.60061
,[8] On existence of subsets of finite measure of sets of infinite measure. Indag. Math., t. 14, 1952, p. 339-344. | MR 48540 | Zbl 0046.28202
,[9] Local nondeterminism and the zeros of Gaussian processes. Ann. Probability, t. 6, 1978, p. 72-84. | MR 488252 | Zbl 0374.60051
,[10] Sample functions of stochastic processes with stationary independent increments. Advances in Probability, t. 3, 1973, p. 241-396. | MR 400406 | Zbl 0309.60047
,[11] Occupation densities. Ann. Probability, t. 8, 1980, p. 1-67. | MR 556414 | Zbl 0499.60081
and ,[12] On the comparison of measure functions. Math. Proc. Cambridge Phil. Soc., t. 78, 1975, p. 483-491. | MR 382605 | Zbl 0326.28006
,[13] Sur certains processus stochastiques homogenes. Compositio Math., t. 7, 1939, p. 283-339. | JFM 65.1346.02 | Numdam | MR 919 | Zbl 0022.05903
,[14] Capacity of level sets of certain stochastic processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 34, 1976, p. 279-284. | MR 420814 | Zbl 0368.60038
,[15] Gaussian sample functions and the Hausdorff dimension of level crossings. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 15, 1970, p. 249-256. | MR 279882 | Zbl 0196.19402
,[16] The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 58, 1981, p. 373-388. | MR 639146 | Zbl 0458.60076
,[17] Local times for Gaussian vector fields, Indiana Univ. Math. J., t. 27, 1978, p. 309-330. | MR 471055 | Zbl 0382.60055
,[18] Sample path properties of processes with stationary independent increments. In Stochastic Analysis, John Wiley and Sons, New York, 1973. | MR 394893
,[19] The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie Venw. Gebiete, t. 6, 1966, p. 170-180. | MR 210196 | Zbl 0178.52702
and ,[20] A property of Brownian motion paths. Illinois J. Math., t. 2, 1958, p. 425-432. | MR 96311 | Zbl 0117.35502
,