@article{AIHPB_1983__19_1_91_0, author = {Weizs\"acker, Heinrich V.}, title = {Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {19}, year = {1983}, pages = {91-100}, zbl = {0509.60002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1983__19_1_91_0} }
Weizsäcker, Heinrich V. Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) pp. 91-100. http://gdmltest.u-ga.fr/item/AIHPB_1983__19_1_91_0/
[1] The global Markov property for euclidean and lattice fields. Physics letters, t. 84 B, 1979, p. 89-90. | MR 533849
and ,[2] On the global Markov property, L. Streit (ed.): Quantum fields-algebras, -processes Springer: Wien, 1980. | MR 601817 | Zbl 0457.60077
,[3] Remarks on the Global Markov Property. Comm. math. Phys., t. 74, 1980, p. 223-234. | MR 578041 | Zbl 0429.60097
,[4] On stationary solutions of a stochastic differential equation. J. Math., Kyoto Univ., t. 4, 1964, p. 1-75. | MR 177456 | Zbl 0131.16402
and ,[5] The Markov property for generalized Gaussian random fields. Ann. Inst. Fourier (Grenoble), t. 24, 1974, p. 143-167. | Numdam | MR 405569 | Zbl 0275.60054
and ,[6] Markoff property of generalized random fields. 7th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad. of Sciences, Praha, 1979.
and ,[7] Gaussian Markov random fields. J. of the Fac. of Sciences. Univ. of Tokyo, Sec. IA, t. 26, 1979, p. 53-73. | MR 539773 | Zbl 0408.60038
,[8] An example on tail fields. In: Measure Theory, Applications to Stochastic Analysis (G. Kallianpur and D. Kölzow, eds.). Lecture Notes in Math., 695, Springer, Berlin, etc., 1978, p. 215. | MR 527090 | Zbl 0401.60002
,[9] Sur la théorie de la prédiction, et le problème de décomposition des tribus F0t+. Sém. de Probabilités X. Lecture Notes in Math., 511, Springer, Berlin, etc., 1976. | Numdam | Zbl 0332.60025
et ,[10] Probability theory and Euclidean field theory in G. Velo, A. Wightman (eds.). Lecture Notes in Physics, 25, Springer, Berlin, etc., 1973. | MR 395513 | Zbl 0367.60108
,[11] Every transformation is bilaterally deterministic. Isr. J. of Math., t. 21, 1975, p. 154-158. | MR 382600 | Zbl 0325.28016
and ,[12] Stationary processes as shifts of functions of independent random variables. J. Math. Mech., t. 8, 1959, p. 665-681. | MR 114249 | Zbl 0092.33601
,[13] An example of a stochastic differential equation having no strong solution. Theory of probability and its applications, t. 20, 1975, p. 416-418. | Zbl 0353.60061
,[14] A simple example concerning the global Markov Property of lattice random fields. 8th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad of Sciences, Praha, 1980.
,[15] The number of phases of inhomogeneous Markov fields with finite state space on N and Z and their behaviour at infinity. To appear in Math. Nachr. | MR 657885 | Zbl 0488.60100
,