@article{AIHPB_1981__17_2_213_0, author = {Van Thu, Nguyen}, title = {A new version of Doeblin's theorem}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {17}, year = {1981}, pages = {213-217}, mrnumber = {625341}, zbl = {0459.60015}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_1981__17_2_213_0} }
Van Thu, Nguyen. A new version of Doeblin's theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 17 (1981) pp. 213-217. http://gdmltest.u-ga.fr/item/AIHPB_1981__17_2_213_0/
[1] Domain of partial attraction for infinitely divisible distributions in a Hilbert space. Colloq. Math., t. XXVIII, 1973, p. 317-322. | MR 350799 | Zbl 0244.60001
,[2] Sur l'ensemble de puissances d'une loi de probabilité. Bull. Sci. Math., t. 6, 1939, p. 71-96. | JFM 66.0610.02 | MR 5541 | Zbl 0063.01128
,[3] Grenzwentsätze für Wahrscheinlichkeitsmasse auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheory verw. Gebiete, t. 34, 1976, p. 285-311. | MR 402849 | Zbl 0309.60010
,[4] A survey on the general central limit problem in Banach spaces. Séminaire sur la géométrie des espaces de Banach, 1977-1978. École Polytechnique. | Numdam | MR 520221 | Zbl 0405.60007
,[5] Universal distribution for infinitely divisible distributions in a Banach space (Prepint). Graduate work at the Wroclaw University, 1978.
,[6] On the convergence of sums of independent Banach space valued random variables. Osaka J. of Math., t. 5, 1968, p. 35-48. | MR 235593 | Zbl 0177.45102
and ,[7] Norm convergent expansion for Gaussian processes in Banach spaces. Proceed. Amer. Math. Soc., t. 25, 1970, p. 890-895. | MR 266304 | Zbl 0209.48604
and ,[8] Probability measures on metric spaces, New York, London, 1967. | Zbl 0153.19101
,[9] Structure des lois indéfiniment divisible dans un espace vectoriel topologique (separe) X. Symposium on Probability methods in analysis. Lecture Notes in Math., p. 299-328. | MR 226692 | Zbl 0153.19301
,