Semiclassical scattering by the Coulomb potential
Kargol, Armin
Annales de l'I.H.P. Physique théorique, Tome 71 (1999), p. 339-357 / Harvested from Numdam
Publié le : 1999-01-01
@article{AIHPA_1999__71_3_339_0,
     author = {Kargol, Armin},
     title = {Semiclassical scattering by the Coulomb potential},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {71},
     year = {1999},
     pages = {339-357},
     mrnumber = {1714348},
     zbl = {0969.81058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1999__71_3_339_0}
}
Kargol, Armin. Semiclassical scattering by the Coulomb potential. Annales de l'I.H.P. Physique théorique, Tome 71 (1999) pp. 339-357. http://gdmltest.u-ga.fr/item/AIHPA_1999__71_3_339_0/

[1] K. Asada and D. Fujiwara, On some oscillatory integral transforms in L2(Rn), Japanese J. Math. 4 (1978) 233-261. | MR 528863

[2] J. Dereziński and C. Gerard, Long-range scattering in the position representation, Preprint. | MR 1459635

[3] J. Dereziński and C. Gerard, Asymptotic Completeness of N-Particle Systems, Texts and Monographs in Physics, Springer, 1997.

[4] J.D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys. 5 (6) (1964) 729-738. | MR 163620

[5] D. Fujiwara, A construction of the fundamental solution for Schrödinger equation, J. d'Analyse Math. 35 (1979) 41-96. | MR 555300 | Zbl 0418.35032

[6] G.A. Hagedorn, Semiclassical quantum mechanics I. ħ → 0 limit for coherent states, Comm. Math. Phys. 71 (1980) 77-93. | MR 556903

[7] G.A. Hagedorn, A time-dependent Born-Oppenheimer approximation, Comm. Math. Phys. 77 (1980) 1-19. | MR 588684 | Zbl 0448.70013

[8] G.A. Hagedorn, Semiclassical quantum mechanics IV. Large order asymptotics and more general states in more than one dimension, Ann. Inst. H. Poincaré 42 (1985) 363-374. | Numdam | MR 801234 | Zbl 0900.81053

[9] I.W. Herbst, Classical scattering with long range forces, Comm. Math. Phys. 35 (1974) 193-214. | MR 351326 | Zbl 0309.70011

[10] L. Hörmander, The existence of wave operators in scattering theory, Math. Z. 149 (1976) 69-91. | MR 393884 | Zbl 0319.35059

[11] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo, Sec. 1A 32 (1985) 77-104. | MR 783182 | Zbl 0582.35036

[12] A. Kargol, An infinite time limit for the time-dependent Born-Oppenheimer approximation, Comm. Math. Phys. 166 (1994) 129-148. | MR 1309544 | Zbl 0821.47051

[13] A. Kargol, The Born-Oppenheimer approximation to the wave operators, Comm. Theoret. Phys., to appear. | MR 1720505

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York, 1979. | Zbl 0405.47007

[15] S.L. Robinson, The semiclassical limit of quantum dynamics II. Scattering theory, Ann. Inst. H. Poincaré 48 (4) (1988) 281-296. | Numdam | MR 969167 | Zbl 0666.35071

[16] B. Simon, Wave operators for classical particle scattering, Comm. Math. Phys. 23 (1971) 37-48. | MR 294899 | Zbl 0238.70012

[17] D.R. Yafaev, Wave operators for the Schrödinger equation, Theor. Math. Phys. 45 (1980) 992-998. | MR 604521 | Zbl 0467.35076

[18] K. Yajima, The quasi-classical limit of quantum scattering theory, Comm. Math. Phys. 69 (1979) 101-129. | Zbl 0425.35076

[19] K. Yajima, The quasi-classical limit of quantum scattering theory II. Long-range scattering, Duke Math. J. 48 (4) (1981) 1-22. | Zbl 0454.35069