@article{AIHPA_1999__71_1_95_0, author = {Colin de Verdi\`ere, Yves and Lombardi, Maurice and Pollet, Jo\"el}, title = {The microlocal Landau-Zener formula}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {71}, year = {1999}, pages = {95-127}, mrnumber = {1704655}, zbl = {0986.81027}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1999__71_1_95_0} }
Colin de Verdière, Yves; Lombardi, Maurice; Pollet, Joël. The microlocal Landau-Zener formula. Annales de l'I.H.P. Physique théorique, Tome 71 (1999) pp. 95-127. http://gdmltest.u-ga.fr/item/AIHPA_1999__71_1_95_0/
[1] An adiabatic theorem without a gap condition, in: Operator Theory: Advances and Applic., Birkhaüser, 1999, pp. 3-12. | MR 1708784 | Zbl 0971.81038
and ,[2] Beweis des Adiabatensatzes, Z. Phys. 51 (1928) 165-169. | JFM 54.0994.03
and ,[3] Normal forms of real symmetric systems with multiplicity, Indag. Math. 4 (1993) 407-421. | MR 1252985 | Zbl 0802.35176
and ,[4] Détermination des populations relatives des sous-niveaux magnétiques du niveau 4 1 D de HeI excité par impact d'ions lourds, Journal de Physique 42 (1981) 235-246.
, , , et ,[5] Limite adiabatique en présence de croisements évités et phases géométriques, 1998, en préparation.
,[6] Equilibre instable en regime semi-classique : I - Concentration microlocale, Commun. PDE 19 (1994) 1535-1563. | MR 1294470 | Zbl 0819.35116
et ,[7] Equilibre instable en régime semi-classique : II - Conditions de Bohr-Sommerfeld, Ann. Inst. Henri Poincaré (Physique théorique) 61 (1994) 347-367. | Numdam | MR 1311072 | Zbl 0845.35076
et ,[8] Singular Boar-Sommerfeld roles, Commun. Math. Phys., to appear. | MR 1712567 | Zbl 01379901
et ,[9] Le lemme de Morse isochore, Topology 18 (1979) 283-293. | MR 551010 | Zbl 0441.58003
et ,[10] Oscillatory integrals with singular symbols, Duke Math. J. 48 (1981) 251-267. | MR 610185 | Zbl 0462.58030
and ,[11] Adiabatic expansions near eigenvalue crossings, Ann. Phys. 196 (1989) 278-295. | MR 1027662 | Zbl 0875.47002
,[12] Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gap, Commun. Math. Phys. 136 (1991) 433-449. | MR 1099690 | Zbl 0723.35068
,[13] Molecular propagation through electron energy level crossings, Memoirs of the AMS 536 (1994). | MR 1234882 | Zbl 0833.92025
,[14] Landau-Zener transitions through small electronic eigenvalues gaps in the Born-Oppenheimer approximation, Ann. Inst. Henri Poincaré (Physique théorique) 68 (1998) 85-134. | Numdam | MR 1618922 | Zbl 0915.35090
and ,[15] Proof of the Landau-Zener formula, Asymptotic Analysis 9 (1994) 209- 258. | MR 1295294 | Zbl 0814.35109
,[16] Exponential asymptotics in a singular limit for n-level scattering systems, SIAM J. Math. Anal. 28 (1997) 669-703. | MR 1443614 | Zbl 0991.34071
,[17] Linear Differential Equations in Banach Space, Translations of Math. Monographs, Amer. Math. Soc., 1971. | MR 342804
,[18] Collected Papers of L. Landau, Pergamon Press, 1965.
,[19] Semi-classical inelastic S-matrix for one-dimensional N-states systems, Rev. Math. Phys. 7 (1995) 193-242. | MR 1317340 | Zbl 0835.34098
and ,[20] Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math. 32 (1979) 483-519. | MR 528633 | Zbl 0396.58006
and ,[21] Mecanique Quantique, Dunod, 1969. | MR 129304
,[22] Analyse semi-classique d'un système d'équations de Schrödinger couplées : formule de Landau-Zener. Thèse de l'université de Grenoble 1, Octobre 1997.
,[23] Autour de l'Approximation Semi-Classique, Birkhäuser, 1987. | MR 897108 | Zbl 0621.35001
,[24] Nonadiabatic effects in slow atomic collisions. I. He+ + He, Phys. Rev. A 4 (1971) 1030-1042.
,[25] Feshbach resonances in the semi-classical limit, Preprint CPT, 1997.
,[26] 5 (1932) 369. | Zbl 0006.09006
, Helv. Phys. Acta[27] Pseudo-differential Operators, Princeton, 1981.
,[28] Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York, 1985. | MR 203188
,[29] Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond. 137 (1932) 696-702. | Zbl 0005.18605
,