Calculation of the Hall conductivity by Abel limit
Nakano, Fumihiko
Annales de l'I.H.P. Physique théorique, Tome 69 (1998), p. 441-455 / Harvested from Numdam
Publié le : 1998-01-01
@article{AIHPA_1998__69_4_441_0,
     author = {Nakano, Fumihiko},
     title = {Calculation of the Hall conductivity by Abel limit},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {69},
     year = {1998},
     pages = {441-455},
     mrnumber = {1659579},
     zbl = {0928.47053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1998__69_4_441_0}
}
Nakano, Fumihiko. Calculation of the Hall conductivity by Abel limit. Annales de l'I.H.P. Physique théorique, Tome 69 (1998) pp. 441-455. http://gdmltest.u-ga.fr/item/AIHPA_1998__69_4_441_0/

[AS] J.E. Avron and R. Seiler, Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett., Vol. 54, 1985, pp. 259-262. | MR 773033

[ASS] J.E. Avron, R. Seiler, and B. Simon, Charge deficiency, charge transport and comparison of dimensions, Commun. Math. Phys., Vol. 159, 1994, pp. 399-422. | MR 1256994 | Zbl 0822.47056

[ASY] J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum Hall effect, Vol. 110, 1987, pp. 33-49. | MR 885569 | Zbl 0626.58033

[B1] J. Bellissard, Ordinary quantum Hall effect and non-commutative cohomology, in Proceedings of the Bad Schandau conference on localization, W. WELLER, P. ZIECHE, Eds., Teubner-Verlag, Leipzig, 1987.

[B2] J. Bellissard, A. Van Elst, H. Schultz-Baldes, The non-commutative geometry of the quantum Hall effect, J. Math. Phys., Vol. 35 (10), 1994, pp. 5373-5451. | MR 1295473 | Zbl 0824.46086

[B3] J. Bellissard, Gap labeling theorems for Schrödinger operators, in from number theory to physics, M. WALDSCHMIDT, P. MOUSSA, J. LUCK, C. ITZYKSON Eds., Springer-Verlag, Berlin, 1991. | MR 1221111 | Zbl 0833.47056

[JN] A. Jensen and S. Nakamura, Mapping properties of functions of Schrödinger operators between Sobolev spaces and Besov spaces, Advanced Studies in Pure Math., Vol. 23, 1994, pp. 187-210. | Zbl 0815.47012

[L] R.B. Laughlin, Quantized hall conductivity in two dimensions, Phys. Rev., Vol. B23, 1981, p. 5632.

[NB] S. Nakamura and J. Bellissard, Low energy bands do not contribute to quantum Hall effect, Commun. Math. Phys., Vol. 31, 1990, pp. 283-305. | MR 1065673 | Zbl 0707.46050

[S] S. Simon, Schrödinger semigroups, Bull. Amer. Mech. Sci., Vol. 7, 1982, pp. 447-526. | MR 670130 | Zbl 0524.35002

[TKNN] D. Thouless, M. Kohmoto, M. Nightingale and M. Den Nijis, Quantum Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett, Vol. 49, 1982, p.40.

[Y] K. Yajima, The Wk,p-continuity of wave operators for Schrödinger operators III, even dimensional cases m ≥ 4, J. Math. Sci. Univ. of Tokyo, Vol. 2, 1995, pp. 311-346. | MR 1366561 | Zbl 0841.47009