The 2D Schrödinger equation for a neutral pair in a constant magnetic field
Jensen, Arne ; Nakamura, Shu
Annales de l'I.H.P. Physique théorique, Tome 67 (1997), p. 387-410 / Harvested from Numdam
Publié le : 1997-01-01
@article{AIHPA_1997__67_4_387_0,
     author = {Jensen, Arne and Nakamura, Shu},
     title = {The 2D Schr\"odinger equation for a neutral pair in a constant magnetic field},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {67},
     year = {1997},
     pages = {387-410},
     mrnumber = {1632236},
     zbl = {0888.47052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1997__67_4_387_0}
}
Jensen, Arne; Nakamura, Shu. The 2D Schrödinger equation for a neutral pair in a constant magnetic field. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) pp. 387-410. http://gdmltest.u-ga.fr/item/AIHPA_1997__67_4_387_0/

[1] N.W. Ashcroft and N.D. Mermin, Solid state physics, Holt, Rinehart and Winston, New York 1976.

[2] J. Avron, I. Herbst and B. Simon, Separation of center of mass in homogeneous magnetic fields, Ann. Physics, Vol. 114, 1978, pp. 431-451. | MR 507741 | Zbl 0409.35027

[3] Ph. Briet, J.M. Combes and P. Duclos, Spectral stability under tunneling, Comm. Math. Phys., Vol. 126, 1989, pp. 133-156. | MR 1027916 | Zbl 0702.35189

[4] Ph. Briet, J.M. Combes and P. Duclos, Spectral stability under tunneling for Schrödinger operators, Symposium "Partial Differential Equations" Holzau 1988 (B.-W. Schulze and H. Triebel, eds), Teubner-Texte zur Mathematik, Vol. 112, Teubner, Leipzig, 1989, pp. 42-51. | MR 1105798 | Zbl 0686.35086

[5] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Texts and Monographs in Physics, Springer-Verlag, 1987. | Zbl 0619.47005

[6] B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, Vol. 1336, Springer-Verlag, Berlin, 1988. | MR 960278 | Zbl 0647.35002

[7] B. Helffer, On spectral theory for Schrödinger operators with magnetic potentials, Spectral and scattering theory and applications (K. Yajima, ed.), Advanced Studies in Pure Mathematics, Vol. 23, Kinokuniya, Tokyo, 1994, pp. 113-141. | MR 1275398 | Zbl 0816.35100

[8] I.W. Herbst, Translation invariance of N-particle Schrödinger operators in homogeneous magnetic fields, Mathematical methods and applications of scattering theory (J. A. DeSanto, A. W. Sáenz, and W. W. Zachary, eds.), Lecture Notes in Physics, Vol. 130, Springer-Verlag, 1980, pp. 169-174. | Zbl 0481.35036

[9] T. Kato, Perturbation theory for linear operators, second ed., Die Grundlehren der Mathematischen Wissenschaften, Vol. 132, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR 407617 | Zbl 0342.47009

[10] W. Kirsch and B. Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal., Vol. 75, 1987, pp. 396-410. | MR 916759 | Zbl 0661.35062

[11] I. Laba, Multiparticle quantum systems in constant magnetic fields, Preprint, UCLA, 1995. | MR 1487921

[12] H. Matsumoto, Quadratic Hamiltonians and associated orthogonal polynomials, J. Function. Anal., Vol. 136, 1996, pp. 214-225. | MR 1375159 | Zbl 0966.33004

[13] M. Reed and B. Simon, Methods of modern mathematical physics. IV: Analysis of operators, Academic Press, New York, 1978. | MR 493421 | Zbl 0401.47001

[14] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), Vol.7, 1982, pp. 447-526. | MR 670130 | Zbl 0524.35002

[15] E. Skibsted, On the asymptotic completeness for particles in constant electromagnetic fields, Preprint, Department of Mathematics, Aarhus University, 1995. | MR 1380998

[16] H.F. Weinberger, Variational methods for eigenvalue approxiation, CBMS, Vol. 15, SIAM, Philadelphia, 1974.