@article{AIHPA_1997__67_3_297_0, author = {Thieullen, M. and Zambrini, Jean-Claude}, title = {Probability and quantum symmetries. I. The theorem of Noether in Schr\"odinger's euclidean quantum mechanics}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {67}, year = {1997}, pages = {297-338}, mrnumber = {1472821}, zbl = {0897.60062}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1997__67_3_297_0} }
Thieullen, M.; Zambrini, J. C. Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's euclidean quantum mechanics. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) pp. 297-338. http://gdmltest.u-ga.fr/item/AIHPA_1997__67_3_297_0/
[1] Méthodes mathématiques de la mécanique classique, Ed. Mir, Moscou, 1976. | MR 474391 | Zbl 0385.70001
,[2] Commande Optimale, Ed. Mir, Moscou, 1982. | MR 728225
, and ,[3] Quantum Mechanics and path integrals, Mc Graw - Hill, N. Y., 1965. | Zbl 0176.54902
and ,[4] Functional Integration and Quantum Physics, Acad. Press, N. Y., 1979. | MR 544188 | Zbl 0434.28013
,[5] Stochastic Differential equations and Diffusion Processes, 2nd ed., North Holland, Amsterdam, 1989. | MR 1011252 | Zbl 0684.60040
and ,[6] On some connections between probability theory and differential and integral equations, Proc. of the 2nd, Berkeley Symp. on Prob. and Statistics, J. Newman Ed., Univ. of California Press, Berkeley, 1951. | MR 45333 | Zbl 0045.07002
,[7] 39, 1960, p. 126. | Zbl 0096.06901
, J. Math. Physics, Vol.[8] Leçons sur les invariants intégraux, Hermann, Paris, 1922. | MR 355764
,[9] a) 27, 1986, p. 2307. b) , and , Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1989, p. 259. | MR 854761
, J. Math. Physics, Vol.[10] Quantum fluctuations, Princeton Series in Physics, P. U. Press, 1985. | MR 783254 | Zbl 0563.60001
,[11] An alternative starting point for Euclidean field theory: Euclidean Quantum Mechanics, IXth International Congress of Mathematical Physics, Swansea (U.K.), Adam Hilger, N. Y., 1989, p. 260. | MR 1033772
,[12] Malliavin Calculus and Euclidean Quantum Mechanics. I. Functional Calculus, J. of Funct. Anal., Vol. 96, 1991, 1, p. 62. | MR 1093507 | Zbl 0733.35093
and ,[13] Field Theory. A modern primer, Benjamin Cummings Publ., Reading, Mass., 1981. | MR 602697
,[14] a) Controlled Markov Processes and Viscosity Solutions, Springer, 1993. | MR 690039
and , Trans. Amer. M. S., No. 277, 1984, p. 1. b) and ,[15] 194, 1989, p. 336. | MR 1015798
, Annals of Physics, Vol.[16] The mathematical framework of Euclidean Quantum Mechanics. An outline in "Stochastic Analysis and Applications", Ed. A. B. Cruzeiro and J. C. Zambrini, No. 26, 1991, Birkhäuser, Boston. | MR 1168072 | Zbl 0784.60106
and ,[17] Quantum Mechanics I, Springer-Verlag, 1989. | Zbl 0824.00008
and ,[18] Dynamical Theories of Brownian Motion, Princeton Univ. Press, N. J., 1967. | MR 214150 | Zbl 0165.58502
,[19] a) Calculus of Variations, Prentice-Hall, N.J., 1963. b) and , Classical and Quantum Dynamics, Springer-Verlag, 1994. | MR 160139
and ,[20] a) Symmetry groups and their applications, Academic Press, N. Y., 1972. b) , Applications of Lie groups to differential equations, Springer-Verlag, N. Y., 1986. | MR 338286 | Zbl 0306.22001
Jr,[21] 85, 1957, p. 431. | Numdam | MR 109961 | Zbl 0097.34004
, Bull. Soc. Math. de France, Vol.[22] a) 33, 1992, No. 9, p. 3050. b) , Potential Analysis, Vol. 2, p. 349, 1993. | Zbl 0762.60100
, J. of Math. Phys., Vol.[23] Canonical transformations for diffusions, C.R. Acad. Sc. Paris, T. 321, Série I, 1995, pp. 339-344. | MR 1346139 | Zbl 0836.60084
and ,[24] 161, 1988, p. 243. | Zbl 0757.93082
, Act. Math., Vol.[25] Symmetries in the Stochastic Calculus of Variations, to appear in Prob. Theory Related Fields. | MR 1440139 | Zbl 0868.60064
and ,[26] a) 2, 1932, p. 269. b) , Sur les liaisons entre les grandeurs aléatoires, Mathematikerkongr, Zurich, Band 1, 1932. c) and , Gebiete, Vol. 30, 1974, p. 65. | MR 1508000
, Ann. Inst. H. Poincaré, Vol.[27] | MR 1240725
, Prob. Theory Related Fields, No. 97, 1993, p. 231.[28] Stochastic calculus of variations and hypo-elliptic operators, Proc. Int. Symp. SDE Kyoto, 1976, 1978, Kinokuniya, Tokyo. | Zbl 0411.60060
,[29] Markov processes, Springer-Verlag, Berlin, 1965.
,[30] Malliavin Calculus and Euclidean Quantum Mechanics, II, J. of Funct. Analysis, Vol. 130, No. 2, 1995, p. 450. | MR 1335388 | Zbl 0821.60060
and ,[31] From Quantum Physics to Probability Theory and back, in "Chaos - the interplay between Stochastic and Deterministic behaviour", Springer lecture Notes in Physics, No. 457, GARBACZEWSKI et al., eds., Springer, Berlin, 1995. | MR 1452626 | Zbl 0839.60090
,[32] Calculus of Variations and Quantum Probability in Lect. Notes in Control and Info., 1988, No. 121, p. 173, N. Y. | MR 1231121
,[33] Reciprocal diffusions in flat space, Prob. Theory Related fields, No. 107, 1997, p. 243. | MR 1431221 | Zbl 0868.60049
,[34] Stochastic mechanics of reciprocal diffusions, J. Math. Physics, Vol. 37, 1996, p. 769. | MR 1371041 | Zbl 0869.60090
and ,[35] Nonlinear elliptic and parabolic equations of the second order, Reidel, Dodrecht, 1987.
,[36] Probability and quantum symmetries, II. The Theorem of Noether in quantum mechanics.
, and ,[37] Conserved quantities and symmetry for stochastic dynamical systems., Phys. Letters A, 1994, No. 195, p. 185. | MR 1306235 | Zbl 0941.34512
,[38] Stochastic analysis, Grund. der Math. Wiss., Vol. 313, Springer, 1997. | Zbl 0878.60001
,