Quantum vacuum polarization at the Black-Hole horizon
Bachelot, Alain
Annales de l'I.H.P. Physique théorique, Tome 67 (1997), p. 181-222 / Harvested from Numdam
@article{AIHPA_1997__67_2_181_0,
     author = {Bachelot, Alain},
     title = {Quantum vacuum polarization at the Black-Hole horizon},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {67},
     year = {1997},
     pages = {181-222},
     mrnumber = {1472567},
     zbl = {0897.53064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1997__67_2_181_0}
}
Bachelot, Alain. Quantum vacuum polarization at the Black-Hole horizon. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) pp. 181-222. http://gdmltest.u-ga.fr/item/AIHPA_1997__67_2_181_0/

[1] J. Audretsch, V. De Sabbata, editor. Quantum Mechanics in Curved Space-Time, Vol. 230 of NATO ASI Series B. Plenum Press, 1989. | MR 1145039 | Zbl 0729.53069

[2] A. Bachelot. Asymptotic Completeness for the Klein-Gordon Equation on the Schwarzschild Metric. Ann. Inst. Henri Poincaré - Physique théorique, 1994, Vol. 61 (4), pp. 411-441. | Numdam | MR 1311537 | Zbl 0809.35141

[3] A. Bachelot. Scattering of Scalar Fields by Spherical Gravitational Collapse. J. Math. Pures Appl., 1997, Vol. 76, pp. 155-210. | MR 1432372 | Zbl 0872.53066

[4] N.D. Birrel, P.C.W. Davies. Quantum fields in curved space. Cambridge University Press, 1982. | MR 652252 | Zbl 0476.53017

[5] O. Bratteli, D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics II. Springer Verlag, 1981. | MR 611508 | Zbl 0463.46052

[6] P. Candelas. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, Vol. 21 (8), 1980, pp. 2185-2202. | MR 570920

[7] B.S. De Witt. Quantum Field Theory in Curved Space-Time. Phys. Rep., Vol. 19(6), 1975, pp. 295-357.

[8] J. Dimock. Algebras of Local Observables on a Manifold. Commun. Math. Phys., Vol. 77, 1980, pp. 219-228. | MR 594301 | Zbl 0455.58030

[9] J. Dimock, B.S. Kay. Classical wave operators and asymptotic quantum field operators on curved space-times. Ann. Inst. Henri Poincaré, Vol. 37(2), 1982, pp. 93-114. | Numdam | MR 682092 | Zbl 0539.35063

[10] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric II. J. Math. Phys., Vol. 27, 1986, pp. 2520-2525. | MR 857397 | Zbl 0608.53065

[11] J. Dimock, B.S. Kay. Classical and Quantum Scattering Theory for linear Scalar Fields on Schwarzschild Metric I. Ann. Phys., Vol. 175, 1987, pp. 366-426. | MR 887979 | Zbl 0628.53080

[12] K. Fredenhagen, R. Haag. On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Comm. Math. Phys., Vol. 127, 1990, pp. 273-284. | MR 1037104 | Zbl 0692.53040

[13] S.A. Fulling. Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press. 1989. | MR 1071177 | Zbl 0677.53081

[14] G.W. Gibbons. S.W. Hawking. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, Vol. 15, 1977, pp. 2738-2751. | MR 459479

[15] R. Haag. Local Quantum Physics. Springer-Verlag, 1992. | MR 1182152 | Zbl 0777.46037

[16] S. Hawking. Particle Creation by Black Holes. Comm. Math. Phys., Vol. 43. 1975. pp. 199-220. | MR 381625

[17] C.J. Isham. Quantum field theory in Curved Space-Times, a general mathematical framework. In Differential Geometric Methods in Mathematical Physics II, volume 676, 1977 of Lecture Notes in Math., pp. 459-512. Springer Verlag. | MR 519626 | Zbl 0403.58007

[18] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, second edition, 1980. | MR 407617

[19] B.S. Kay. Quantum Mechanics in Curved Space-Times and Scattering Theory. In Differential Geometric Methods in Mathematical Physics, Vol. 905, 1980 of Lecture Notes in Math., pp. 272-295. Springer Verlag. | MR 582628 | Zbl 0544.35078

[20] J-P. Nicolas. Scattering of linear Dirac fields by a spherically symetric Black-Hole. Ann. Inst. Henri Poincaré - Physique théorique, Vol. 62(2), 1995, pp. 145-179. | Numdam | MR 1317184 | Zbl 0826.53072

[21] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many degrees of freedom, II. Canadian J. Math, Vol. 13, 1961, pp. 1-18. | MR 128839 | Zbl 0098.22104

[22] G.L. Sewell. Relativity of temperature and the Hawking effect. Phys. Lett. A, Vol. 79A(1), 1980, pp. 23-24. | MR 597629

[23] G.L. Sewell. Quantum Fields on Manifolds: PCT and Gravitationally Induced Thermal States. Ann. Phys., Vol. 141, 1982, pp. 201-224. | MR 673980

[24] W.G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, Vol. 14(4), 1976, pp. 870-892.

[25] R. Wald. On Particle Creation by Black Holes. Comm. Math. Phys., Vol. 45, 1975, pp. 9-34. | MR 391814

[26] R. Wald. Quantum field theory in curved space-time and black-hole thermodynamics. University of Chicago Press, 1994. | MR 1302174 | Zbl 0842.53052

[27] M. Weinless. Existence and Uniqueness of the Vacuum for Linear Quantized Fields. J. Funct. Anal., Vol. 4, 1969, pp. 350-379. | MR 253687 | Zbl 0205.57504

[28] J.W. Yorkjr., Dynamical origin of Black-Hole radiance. Phys. Rev. D, Vol. 28(12). 1983, pp. 2929-2945. | MR 726730