Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
Alouges, F. ; Ghidaglia, J. M.
Annales de l'I.H.P. Physique théorique, Tome 67 (1997), p. 411-447 / Harvested from Numdam
@article{AIHPA_1997__66_4_411_0,
     author = {Alouges, F. and Ghidaglia, Jean-Michel},
     title = {Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {67},
     year = {1997},
     pages = {411-447},
     mrnumber = {1459514},
     zbl = {0911.35007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1997__66_4_411_0}
}
Alouges, F.; Ghidaglia, J. M. Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) pp. 411-447. http://gdmltest.u-ga.fr/item/AIHPA_1997__66_4_411_0/

[1] F. Alduges,, Un algorithme qui décroît sûrement l'énergie des cristaux liquides, thèse de doctorat, Université d'Orsay, 1990.

[2] F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case, to appear in SIAM Journal on Numer. Anal. and prépublication du CMLA # 9515, Cachan, 1995. | MR 1472192

[3] F. Alouges and B.D. Coleman, Computation of stable equilibrium states of nematic phases between cylinders, in preparation.

[4] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonie maps, Variational methods, H. Berestycki, J.-M. Coron and I. Ekeland Eds, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 37-52. | MR 1205144 | Zbl 0793.58011

[5] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. | MR 868739 | Zbl 0608.58016

[6] R. Cohen and M. Taylor, Weak stability of the map x/|x| for liquid crystal, Comm. Partial Differential Equations, Vol. 15, 1990, pp. 675-692. | MR 1070842 | Zbl 0716.49001

[7] R. Cohen, Perturbation techniques for liquid crystal functionals, lectures given at the Ecole Normale Supérieure de Cachan.

[8] R. Cohen, Fractional step methods for liquid crystals problems, PhD thesis, University of Minnesota, Minneapolis, 1988.

[9] R. Cohen and M. Luskin, Field-induced instabilities in Nematic liquid crystals, in Nematics: Mathematical and physical aspects, 1991, pp. 261-278. | MR 1178100 | Zbl 0727.76015

[10] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, in Theory and application of liquid crystals, IMA 5, Springer-Verlag, New-York, 1987, pp. 99-122. | MR 900831

[11] J.-M. Coron, J.-M. Ghidaglia and F. Hélein Eds, Nematics: Mathematical and physical aspects, Kluwer, Dordrecht, 1991. | MR 1178081 | Zbl 0722.00043

[12] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. | MR 495450 | Zbl 0401.58003

[13] J.L. Ericksen, Liquid crystals with variable degree of orientation, IMA preprint # 559, Minneapolis, 1989. | MR 1079183

[14] P.-G. De Gennes, The physics of liquid crystals, Clarendon Press, Oxford, 1974,

see also P.-G. De Gennes and J. Prost, The physics of liquid crystals, 2nd edition, International series of monographs (Physics) 83, Oxford Sci. Pub., Oxford, 1993.

[15] M. Giaquinta, Multiple integrals in the calculus ofvariations and nonlinear elliptic systems, Annals of mathematics studies, Princeton University Press, Princeton, 1983. | MR 717034 | Zbl 0516.49003

[16] K. Godev, Mathematical models of liquid crystals with variable degree of orientation, PhD thesis, Pennsylvania State University, 1994.

[17] R. Gulliver, Harmonic mappings, symmetry and computer graphics, preprint CMA-R- 52-88. | MR 1081330

[18] R. Gulliver, Fiber evolution in the Heat flow of harmonie maps, in Nematics: Mathematical and physical aspects, J.-M. Coron et al. eds (1991). | MR 1178092 | Zbl 0738.58013

[19] R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., Vol. 105, 1986, pp. 547-570. | MR 852090 | Zbl 0611.35077

[20] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Vol. 5, 1988, pp. 297-322. | Numdam | MR 963102 | Zbl 0657.49018

[21] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals, Proc. CIRM, Trento, IMA, preprint 276. | MR 974607

[22] R. Hardt and F.-H. Lin, A remark on H1 mappings, Manuscripta Math., Vol. 56, 1986, pp. 1-10. | MR 846982 | Zbl 0618.58015

[23] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and applications of liquid crystals, IMA Vol. 5, Springer-Verlag, New-York, 1987, pp. 161-166. | MR 900833

[24] F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 565-568. | MR 916336 | Zbl 0641.49003

[25] D. Kinderlehrer and B. Ou, Quadratic variation of liquid crystal energy at x/|x|, Proc. R. Soc. London A, Vol. 437, 1992, pp. 475-487. | MR 1163558 | Zbl 0761.49012

[26] D. Kinderlehrer, B. Ou and N. Walkington, The elementary defects of the Oseen-Frank energy for a liquid crystal, C. R. Acad. Sci. Paris, Série I, Vol. 316, 1993, pp. 465-470. | MR 1209268 | Zbl 0784.35085

[27] M. Kléman, Points, Lines and Walls, John Wiley, 1983. | MR 734901

[28] F.-H. Lin, On nematic liquid crystals with variable degree of orientation, C. P. A. M., Vol. XLIV, 1991, pp. 453-468. | MR 1100811 | Zbl 0733.49005

[29] F.-H. Lin, Une remarque sur l'application x/|x|, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 529-531. | Zbl 0652.58022

[30] S.-Y. Lin, Numerical analysis for liquid crystal problems, PhD thesis, University of Minnesota, Minneapolis, 1987.

[31] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer Verlag, 1961. | MR 153974 | Zbl 0098.31101

[32] L. Quivy, A minimization algorithm for a relaxed energy connected with the theory of liquid crystal, to appear in Mathematical models and methods in applied sciences, and Prépublication du CMLA # 9420, Cachan, 1994. | MR 1316191

[33] T. Riviere, Everywhere discontinuous harmonic maps, Prépublication du CMLA # 9302, Cachan, 1993. See also C. R. Acad. Sci. Paris, Série I, t. 314, 1992, pp. 719-723. | MR 1163864 | Zbl 0780.49030

[34] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom., Vol. 17, 1982, pp. 307-335. | MR 664498 | Zbl 0521.58021

[35] E. Virga, Variational Theories for liquid crystals, Chapman & Hall London, New York, 1994. | Zbl 0814.49002