An almost-Robertson-Walker universe model and the equivalence classes of perturbations : nonbarotropic perfect fluids
Banach, Zbigniew ; Piekarski, Sławomir
Annales de l'I.H.P. Physique théorique, Tome 65 (1996), p. 273-309 / Harvested from Numdam
Publié le : 1996-01-01
@article{AIHPA_1996__65_3_273_0,
     author = {Banach, Zbigniew and Piekarski, S\l awomir},
     title = {An almost-Robertson-Walker universe model and the equivalence classes of perturbations : nonbarotropic perfect fluids},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {65},
     year = {1996},
     pages = {273-309},
     zbl = {0865.53088},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1996__65_3_273_0}
}
Banach, Zbigniew; Piekarski, Sławomir. An almost-Robertson-Walker universe model and the equivalence classes of perturbations : nonbarotropic perfect fluids. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) pp. 273-309. http://gdmltest.u-ga.fr/item/AIHPA_1996__65_3_273_0/

[1] P.J.E. Peebles, Principles of physical cosmology, Princeton, Princeton University Press, 1993. | MR 1216520

[2] E.M. Lifshitz and I.M. Khalatnikov, Investigations in relativistic cosmology, Adv. in Phys. (Phil. Mag. Suppl.), Vol. 12, 1963, pp. 185-249. | MR 154735 | Zbl 0112.44306

[3] S.W. Hawking, Perturbations of an expanding universe, Astrophys. J., Vol. 145, 1966, pp. 544-554.

[4] P.J.E. Peebles, The large-scale structure of the universe, Princeton, Princeton University Press, 1980. | MR 647948

[5] J.M. Bardeen, Gauge-invariant cosmological perturbations, Phys. Rev. D, Vol. 22, 1980, pp. 1882-1905. | MR 590395

[6] G.F.R. Ellis and M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations, Phys. Rev. D, Vol. 40, 1989, pp. 1804-1818. | MR 1015443

[7] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Phys. Rep., Vol. 215, 1992, pp. 203-333. | MR 1174019

[8] J. Ehlers, Survey of general relativity theory, in W. ISRAEL Ed., Relativity, Astrophysics, and Cosmology, Vol. 38, Boston, Redeil, 1973, pp. 1-125.

[9] S.W. Hawking and G.F.R. Ellis, The large-scale structure of space-time, Cambridge, Cambridge University Press, 1973. | MR 424186 | Zbl 0265.53054

[10] R. Wald, General relativity, Chicago, University of Chicago, 1984. | MR 757180 | Zbl 0549.53001

[11] P. D'Eath, On the existence of perturbed Roberston-Walker universes, Ann. Phys. (NY), Vol. 98, 1976, pp. 237-263. | MR 416457 | Zbl 0334.53036

[12] Z. Banach and S. Piekarski, Perturbation theory based on the Einstein-Boltzmann system. I. Illustration of the theory for a Robertson-Walker geometry, J. Math. Phys., Vol. 35, 1994, pp. 4809-4831. | MR 1290903 | Zbl 0817.53050

[13] Z. Banach and S. Piekarski, Perturbation theory based on the Einstein-Boltzmann system. II. Illustration of the theory for an almost-Robertson-Walker geometry, J. Math. Phys., Vol. 35, 1994, pp. 5885-5907. | MR 1299926 | Zbl 0817.53051

[14] J.L. Synge, The relativistic gas, Amsterdam, North-Holland, 1957. | MR 88362 | Zbl 0077.41706

[15] Z. Banach and S. Piekarski, Two linearization procedures for the Boltzmann equation in a k = 0 Robertson-Walker space-time, J. Stat. Phys., Vol. 76, 1994, pp. 1415-1437. | MR 1298109 | Zbl 0837.53063

[16] Z. Banach and H. Makaruk, Relaxation-time approximation for a Boltzmann gas in Robertson-Walker universe models, Int. J. Theor. Phys., Vol. 34, 1995, pp. 761-777. | MR 1332204 | Zbl 0828.53082

[17] Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, manifolds and physics. Part I: Basics, Amsterdam, North-Holland, 1989. | MR 685274

[18] J.M. Stewart, Perturbations of Friedmann-Robertson-Walker cosmological models, Class. Quantum Grav., Vol. 7, 1990, pp. 1169-1180. | MR 1058337 | Zbl 0703.53068

[19] J. Ehlers, Contributions to the relativistic mechanics of continuous media, Gen. Rel. Grav., Vol. 25, 1993, pp. 1225-1266. | MR 1247350 | Zbl 0792.53070

[20] M. Bruni, P.K. Dunsby and G.F.R. Ellis, Cosmological perturbations and the physical meaning of gauge-invariant variables, Astrophys. J., Vol. 395, 1992, pp. 34-53.

[21] G.F.R. Ellis, J. Hwang and M. Bruni, Covariant and gauge-independent perfect-fluid Roberston-Walker perturbations, Phys. Rev. D, Vol. 40, 1989, pp. 1819-1826. | MR 1015444

[22] J.M. Stewart and M. Walker, Perturbations of spaces-times in general relativity, Proc. R. Soc. Lond. A, Vol. 341, 1974, pp. 49-74. | MR 421557

[23] G.F.R. Ellis and D.R. Matravers, General covariance in general relativity?, Gen. Rel. Grav., Vol. 27, 1995, pp. 777-788. | MR 1344298 | Zbl 0842.53071

[24] C. Truesdell and R. Toupin, The classical field theories, in S. FLÜGGE Ed., Encyclopedia of Physics, Vol. III/1, Berlin, Springer-Verlag, 1960, pp. 226-793. | MR 118005

[25] A. Trautman, Conservation laws in general relativity, in L. WITTEN Ed., Gravitation: An introduction to current research, New York/London, Wiley, 1962. | MR 143627

[26] F.A.E. Pirani, Introduction to gravitational radiation theory, in S. DESER and K. W. FORD Eds., Lectures on general relativity, Englewood Cliffs, New Jersey, Prentice-Hall, Inc, 1965, pp. 249-373.

[27] J.A. Schouten, Ricci-calculus: An introduction to tensor analysis and its geometrical applications, Berlin, Springer-Verlag, 1954. | MR 66025 | Zbl 0057.37803

[28] Z. Banach and S. Piekarski, Theory of cosmological perturbations formulated in terms of a complete set of basic gauge-invariant quantities, Int. J. Theor. Phys., Vol. 35, 1996, pp. 633-663. | MR 1379910 | Zbl 0849.58083

[29] Z. Banach and S. Piekarski, Gauge-invariant cosmological perturbation theory for collisionless matter: Application to the Einstein-Liouville system, Gen. Rel. Grav., in press. | Zbl 0875.83069