@article{AIHPA_1996__65_2_163_0, author = {Farhy, Leon S. and Tsanov, V. V.}, title = {Scattering poles for connected sums of euclidean space and Zoll manifolds}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {65}, year = {1996}, pages = {163-174}, mrnumber = {1411265}, zbl = {0915.58107}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1996__65_2_163_0} }
Farhy, L. S.; Tsanov, V. V. Scattering poles for connected sums of euclidean space and Zoll manifolds. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) pp. 163-174. http://gdmltest.u-ga.fr/item/AIHPA_1996__65_2_163_0/
[1] Le spectre d'une variété Riemannienne, Lecture Notes in Math., Vol. 194, Berlin, 1971. | Zbl 0223.53034
, and ,[2] Manifolds all of whose geodesics are closed, Springer-Verlag, 1978. | MR 496885 | Zbl 0387.53010
,[3] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Vol. 29, 1975, pp. 39-79. | MR 405514 | Zbl 0307.35071
and ,[4] Distribution near the real axis of scattering poles generated by a non-hyperbolic periodic ray, Ann. Inst. H. Poincaré, Vol. 60, 1994, pp. 291-302. | Numdam | MR 1281648 | Zbl 0808.35091
,[5] Lower bounds on the number of scattering poles under lines parallel to the real axis, Comm. P.D.E., Vol. 20, 1995, pp. 729-740. | MR 1326904 | Zbl 0822.35105
,[6] Trapping obstacles with non-hyperbolic periodic ray, asymptotic behaviour of solutions, Math. Z., Vol. 217, 1994, pp. 143-165. | MR 1292178 | Zbl 0808.35067
,[7] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bull. S.M.F., T. 116, Mémoire n° 31, 1988. | Numdam | MR 998698 | Zbl 0654.35081
,[8] Majorations à la Weyl pour le nombre de résonances à une perturbation compacte du laplacien euclidien, preprint.
,[9] The analysis of linear partial differential operators, Springer-Verlag, 1983-1985.
,[10] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Vol. 23, 1983, pp. 127-194. | MR 692733 | Zbl 0561.35060
,[11] Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math., Vol. 22, 1985, pp. 657-689. | MR 815439 | Zbl 0617.35102
,[12] Scattering theory, Academic Press, New York, 1967. | MR 1037774 | Zbl 0186.16301
and ,[13] Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 737-787. | MR 254432 | Zbl 0181.38201
and ,[14] Scattering theory and the trace of the wave group, J. of Funct. Anal., Vol. 45, 1982, pp. 29-40. | MR 645644 | Zbl 0525.47007
,[15] Polynomial bounds on the number of scattering poles, J. of Funct. Anal., Vol. 53, 1983, pp. 287-303. | MR 724031 | Zbl 0535.35067
,[16] Upper bounds on the number of scattering poles and the Lax-Phillips conjecture, Asympt. Analysis, Vol. 7, 1993, pp. 97-104. | MR 1225440 | Zbl 0801.35099
and ,[17] Complex scaling and the distribution of scattering poles, J. of Amer. Math. Soc., Vol. 4, 1991, pp. 729-769. | MR 1115789 | Zbl 0752.35046
and ,[18] Lower bounds on the number of scattering poles, Comm. P.D.E., Vol. 18, 1993, pp. 847-857. | MR 1218521 | Zbl 0784.35070
and ,[19] Lower bounds on the number of scattering poles II, J. Funct. Anal., Vol. 123, 1994, pp. 336-367. | MR 1283032 | Zbl 0823.35137
and ,[20] Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann., Vol. 291, 1991, pp. 39-49. | MR 1125006 | Zbl 0754.35105
,[21] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., Vol. 146, 1992, pp. 205-216. | MR 1163673 | Zbl 0766.35032
,[22] Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., Vol. 44, 1977, pp. 883-892. | MR 482878 | Zbl 0385.58013
,[23] Counting scattering poles, Spectral and Scattering Theory, M. Ikawa ed., Marcel Dekker, 1995, pp. 301-331. | MR 1291649 | Zbl 0823.35139
,