Phase space properties of local observables and structure of scaling limits
Buchholz, Detlev
Annales de l'I.H.P. Physique théorique, Tome 65 (1996), p. 433-459 / Harvested from Numdam
Publié le : 1996-01-01
@article{AIHPA_1996__64_4_433_0,
     author = {Buchholz, Detlev},
     title = {Phase space properties of local observables and structure of scaling limits},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {65},
     year = {1996},
     pages = {433-459},
     mrnumber = {1407755},
     zbl = {0857.46055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1996__64_4_433_0}
}
Buchholz, Detlev. Phase space properties of local observables and structure of scaling limits. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) pp. 433-459. http://gdmltest.u-ga.fr/item/AIHPA_1996__64_4_433_0/

[1] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., Vol. 7, 1995, p. 1195. | MR 1369742 | Zbl 0842.46052

[2] J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford: Clarendon Press 1989. | MR 1079938

[3] R. Haag, Local Quantum Physics, Berlin, Heidelberg, New York: Springer 1992. | MR 1182152 | Zbl 0777.46037

[4] R. Haag and J.A. Swieca, When does a quantum field theory describe particles?, Commun. Math. Phys., Vol. 1, 1965, p. 308. | MR 197077 | Zbl 0149.23803

[5] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in quantum field theory, Commun. Math. Phys., Vol. 106, 1986, p. 321. | MR 855315 | Zbl 0626.46064

[6] D. Buchholz and P. Junglas, On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys., Vol. 121, 1989, p. 255. | MR 985398 | Zbl 0673.46045

[7] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math., Vol. 75, 1984, p. 493. | MR 735338 | Zbl 0539.46043

[8] A. Pietsch, Nuclear locally convex spaces, Berlin, Heidelberg, New York: Springer 1972. | MR 350360 | Zbl 0236.46001

[9] D. Buchholz and P. Jakobi, On the nuclearity condition for massless fields, Lett. Math. Phys., Vol. 13, 1987, p. 313. | MR 895294 | Zbl 0637.46079

[10] D. Buchholz, C. D'Antoni and R. Longo, Nuclear maps and modular structures. II. Applications to quantum field theory, Commun. Math. Phys., Vol. 129, 1990, p. 115. | MR 1046280 | Zbl 0773.47007

[11] D. Buchholz and P. Porrmann, How small is the phase space in quantum field theory?, Ann. Inst. H. Poincaré, Vol. 52, 1990, p. 237. | Numdam | MR 1057446 | Zbl 0719.46044

[12] D. Buchholz, On the manifestation of particles, In: Mathematical physics towards the 21st century, Sen, R. N., Gersten, A., eds. Beer-Sheva: Ben Gurion University Press 1994.

[13] D. Buchholz and C. D'Antoni, Phase space properties of charged fields in theories of local observables, Rev. Math. Phys., Vol. 7, 1995, p. 527. | MR 1332977 | Zbl 0836.46070

[14] M. Takesaki, Theory of operator algebras. I., Berlin, Heidelberg, New York: Springer 1979. | MR 1873025 | Zbl 0436.46043

[15] S. Sakai, C* algebras and W* algebras, Berlin, Heidelberg, New York: Springer 1971. | MR 442701 | Zbl 0219.46042

[16] D. Buchholz, C. D'Antoni and K. Fredenhagen, The universal structure of local algebras, Commun. Math. Phys., Vol. 111, 1987, p. 123. | MR 896763 | Zbl 0645.46048

[17] D. Buchholz and J. Yngvason, Generalized nuclearity conditions and the split property in quantum field theory, Lett. Math. Phys., Vol. 23, 1991, p. 159. | MR 1148509 | Zbl 0795.46002