Spherical symmetry in classical and quantum Galilei general relativity
Vitolo, Raffaele
Annales de l'I.H.P. Physique théorique, Tome 65 (1996), p. 177-203 / Harvested from Numdam
@article{AIHPA_1996__64_2_177_0,
     author = {Vitolo, Raffaele},
     title = {Spherical symmetry in classical and quantum Galilei general relativity},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {65},
     year = {1996},
     pages = {177-203},
     mrnumber = {1386216},
     zbl = {0854.53071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1996__64_2_177_0}
}
Vitolo, Raffaele. Spherical symmetry in classical and quantum Galilei general relativity. Annales de l'I.H.P. Physique théorique, Tome 65 (1996) pp. 177-203. http://gdmltest.u-ga.fr/item/AIHPA_1996__64_2_177_0/

[1] E. Cartan, On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli, 1986. | MR 881216 | Zbl 0657.53001

[2] A. Cabras, D. Canarutto, I. Kolar and M. Modugno, Structured bundles, Pitagora, Bologna, 1990.

[3] D. Canarutto, A. Jadczyk and M. Modugno, Quantum mechanics of spin particle in a curved spacetime with absolute time, to appear in Rep. Math. Phys. | Zbl 0888.53052

[4] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D, Vol. 31, No 8, 1985, pp. 1841-1853. | MR 787753

[5] C. Duval and H.P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., Vol. 16, No. 4, 1984, pp. 333-347. | MR 741410

[6] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. | MR 1083149 | Zbl 0716.53001

[7] S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. | MR 424186 | Zbl 0265.53054

[8] J. Janyska, Remarks on symplectic forms in general relativity, 1993, to appear.

[9] A. Jadczyk and M. Modugno, A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. | Zbl 1004.83518

[10] A. Jadczyk and M. Modugno, Galilei General Relativistic Quantum Mechanics, 1993, book preprint. | MR 1349843 | MR 1212817

[11] H.P. Künzle and C. Duval, Dirac field on Newtonian spacetime, Ann. Inst. H. Poinc., Vol. 41, No. 4, 1984, pp. 363-384. | Numdam | MR 777912 | Zbl 0583.53061

[12] W. Klingenberg, Riemannian Geometry, de Gryter Studies in Math. 1, de Gruyter, Berlin, 1982. | MR 666697 | Zbl 0495.53036

[13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. | MR 152974 | Zbl 0119.37502

[14] K. Kuchar, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D., Vol. 22, No. 6, 1980, pp. 1285-1299. | MR 586704

[15] H.P. Künzle, General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, 1983, A. Prastaro ed., Tecnoprint, Bologna, 1984, pp. 37-48. | MR 823714

[16] S. Lang, Differential Manifolds, Addison-Wesley, Reading (Ma), 1972. | MR 431240 | Zbl 0239.58001

[17] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed of Int. Meet. on Geometry and Physics, Pitagora ed., Bologna, 1983, pp. 135-165. | MR 760841 | Zbl 0539.53026

[18] E. Prugovecki, Quantum geometry. A Framework for quantum general relativity, Kluwer Academic Publishers, 1992. | MR 1158875 | Zbl 0748.53058

[19] E. Prugovecki, On the general covariance and strong equivalence principles in quantum general relativity, preprint, 1993. | MR 1293617

[20] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. press, 1951. | MR 39258 | Zbl 0054.07103

[21] R.K. Sachs and H. Wu, General Relativity and Cosmology, Bull. of Amer. Math. Soc., Vol. 83, 1976, pp. 1101-1164. | MR 503499 | Zbl 0376.53038

[22] A. Trautman, Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris, Vol. 257, 1963, pp. 617-620. | MR 154718 | Zbl 0115.43105

[23] A. Trautman, Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty, No 42, Indiana Univ. press, 1966, pp. 413-425. | MR 202450