Semi-classical eigenstates at the bottom of a multidimensional well
Pankratova, T. F.
Annales de l'I.H.P. Physique théorique, Tome 63 (1995), p. 361-382 / Harvested from Numdam
Publié le : 1995-01-01
@article{AIHPA_1995__62_4_361_0,
     author = {Pankratova, T. F.},
     title = {Semi-classical eigenstates at the bottom of a multidimensional well},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     volume = {63},
     year = {1995},
     pages = {361-382},
     mrnumber = {1343782},
     zbl = {0835.35120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPA_1995__62_4_361_0}
}
Pankratova, T. F. Semi-classical eigenstates at the bottom of a multidimensional well. Annales de l'I.H.P. Physique théorique, Tome 63 (1995) pp. 361-382. http://gdmltest.u-ga.fr/item/AIHPA_1995__62_4_361_0/

[1] M.V. Fedoryuk, Asymptotics of the Point Spectrum of the Operator W'' + λ2p(x) W, Mat. Sb., Vol. 68, (110), 1965, pp. 81-110 (Russian).

[2] S.Yu. Slavyanov, Asymptotics of Singular Sturm-Liuville Problems with Respect to a Large Parameter in the Case of Close Transition Points, Differentsial'nye Uravneniya, Vol. 5, 1969, pp. 313-325, English transl. in Differential Equations, Vol. 5, 1969. | MR 245921 | Zbl 0249.34012

[3] A.G. Alenitsyn, The Spectrum Splitting Generated by a Potential Barrier in Problems with a Symmetrical Potential, Differentsial'nye Uravneniya, Vol. 18, 1982, pp. 1971-1975, English transl. in Differential Equations, Vol. 18, 1982. | MR 681980 | Zbl 0522.34020

[4] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, I. Non-Degenerate Minima: Asymptotic Expansions, Ann. Inst. Henry Poincaré, Vol. 38, 1983, pp. 295-307. | Numdam | MR 708966 | Zbl 0526.35027

[5] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling, Ann. Math., Vol. 120, 1984, pp. 89-118. | MR 750717 | Zbl 0626.35070

[6] V.P. Maslov, The Complex WKB-Method in Nonlinear Equations, Nauka, Moscow, 1981 (Russian).

[7] G. Jona-Lasinio, F. Martinelli and E. Scoppola, New Approach to the Semiclassical Limit of Quantum Mechanics, Comm. Math. Phys., Vol. 80, 1981, pp. 223-254. | MR 623159 | Zbl 0483.60094

[8] E.M. Harrel, Double Wells, Comm. Math. Phys., Vol. 75, 1980, pp. 239-261. | MR 581948 | Zbl 0445.35036

[9] T.F. Pankratova, Quasimodes and Splitting of Eigenvalues, Soviet Math. Dokl., Vol. 29, 1984, pp. 597-601. | MR 754093 | Zbl 0592.34012

[10] E. Delabaere and H. Dillinger, Contribution à la resurgence quantique, Thèse de doctorat de Math., Université de Nice-Sophia-Antipolis.

[11] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit I, Comm. in Partial Differential Equations, Vol. 9, 1984, pp. 337-408. | MR 740094 | Zbl 0546.35053

[12] B. Helffer and J. Sjöstrand, Puits Multiples en Limite Semi-Classical II. Interaction moléculaire. Symétries. Perturbation, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 127- 212. | Numdam | MR 798695 | Zbl 0595.35031

[13] B. Helffer and J. Sjöstrand, Multiple Wells in the Semi-Classical Limit III. Interaction Through Non-Resonant Wells, Math. Nachr., Vol. 124, 1985, pp. 263-313. | Zbl 0597.35023

[14] G. Jona-Lasinio, F. Martinelli and E. Scoppola, Multiple Tunneling in d-Dimensions: a Quantum Particle in a Hierarchical Potential, Ann. Inst. Henry Poincaré, Vol. 42, 1985, pp. 73-108. | Numdam | MR 794366 | Zbl 0586.35030

[15] S. Yu Slavyanov and N.A. Veshev, The Quantization of Lower States of an Unharmonic Oscillator with Methods of the Classical Dynamics., Problemy Matfiziki, vyp 13, 1991 (Russian).

[16] S. Graffi and T. Paul, The Schrödinger Equation and Canonical Perturbation Theory, Comm. Math. Phys., Vol. 108, 1987, pp. 25-40. | MR 872139 | Zbl 0622.35071

[17] J. Bellissard and M. Vittot, Heisenberg's Picture and Noncommutative Geometry of the Semiclassical Limit in Quantum Mechanics, Ann. Inst. Henry Poincaré, Vol. 52, 1990, pp. 175-235. | Numdam | MR 1057445 | Zbl 0705.46037

[18] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, The Splitting of the Low Lying Energy Levels of the Schrödinger Operator and the Asymptotics of the Fundamental Solution of the Equation hut = (h2Δ/2 - V (x))u with a Symmetric Potential, Teoret. Mat. Fiz., Vol. 87, 1991, pp. 323-375, English transl. in Theoret. and Math. Phys., Vol. 87, 1991. | MR 1129671 | Zbl 0745.35033

[19] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman Equation. Exponential Asymptotics and Tunneling, Advances in Soviet Mathematics, Vol. 13, 1992, pp. 1-46. | MR 1203783 | Zbl 0796.35141

[20] S.Yu. Dobrokhotov and V.N. Kolokoltsov, Splitting Amplitudes of the Lowest Energy Levels of the Schrödinger Operator with Double well Potential, Teoret. Mat. Fiz., Vol. 94, 1993, pp. 346-434, English transl. in Theoret. and Math. Phys., Vol. 94, 1993. | MR 1226223 | Zbl 0799.35050

[21] V.I. Arnol'D, Modes and Quasi-Modes, Functional. Anal. i. Prilozhen, Vol. 6, 1972, pp. 12-20, English transl. in Functional Anal. Appl., Vol. 6, 1972 (Russian). | Zbl 0251.70012

[22] V.I. Arnol'D, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1989, (Russian). | MR 1037020 | Zbl 0692.70003

[23] V.I. Arnol'D, V.V. Kozlov and A.I. Neishtadt, Dynamical Systems-3. Mathematical Aspects in Classical and Celestial Mechanics, Itogi Nauki i Tekhnik. Modern Problems in Mathematics. Fundamental Orientations, Viniti ANSSSR Eds., Vol. 3, Moscow, 1985 (Russian). | Zbl 0674.70003

[24] J. Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems, Amer. J. Math., Vol. 58, 1936, pp. 141-163. | JFM 62.1795.10 | MR 1507138 | Zbl 0013.28401

[25] J. Williamson, The Exponential Representation of Canonical Matrices, Amer. J. Math., Vol. 61, 1939, pp. 897-911. | MR 220 | Zbl 0022.10007

[26] J. Sjöstrand, Analytic Wavefront Sets and Operators with Multiple Characteristics, Hokkaido Math. J., Vol. 12, 1983, pp. 392-433. | MR 725588 | Zbl 0531.35022

[27] Nguyên Hu'U Du'C and F. Pham, Germes de configurations legendriennes stables et functions d'Airy-Weber generalisees, Annales de l'Institut Fourier, Grenoble, Vol. 41, 1991, pp. 905-936. | Numdam | MR 1150572 | Zbl 0741.58048

[28] L.V. Yantorovich and G.P. Akilov, Functional Analysis, Nauka, 2nd rev., Moscow, 1977, English transl., Pergamon Press, 1982. | MR 664597 | Zbl 0484.46003