@article{AIHPA_1995__62_4_325_0, author = {Sobolev, A. V.}, title = {Quasi-classical asymptotics of local Riesz means for the Schr\"odinger operator in a moderate magnetic field}, journal = {Annales de l'I.H.P. Physique th\'eorique}, volume = {63}, year = {1995}, pages = {325-360}, mrnumber = {1343781}, zbl = {0843.35024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPA_1995__62_4_325_0} }
Sobolev, A. V. Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field. Annales de l'I.H.P. Physique théorique, Tome 63 (1995) pp. 325-360. http://gdmltest.u-ga.fr/item/AIHPA_1995__62_4_325_0/
[1] Notes on The N-Body Problem, Part II, University of Geneve, preprint, Geneve, 1991. | MR 991005
, and ,[2] Schrödinger operators with magnetic fields, I., Duke Math. J., Vol. 45 (4), 1978, pp. 847-883. | MR 518109 | Zbl 0399.35029
, and ,[3] The energy asymptotics of large Coulomb systems, Lecture Notes in Physics, Vol. 403 (E. Balslev, ed.), Springer, Heidelberg, pp. 79-99. | MR 1181242 | Zbl 0834.47066
, , and ,[4] Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Vol. 53, 1983, pp. 246-268. | MR 724029 | Zbl 0524.35103
and ,[5] | MR 705278
, The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1983.[6] Asymptotics of the ground state energies of Large Coulomb systems, Ann. of Math., Vol. 138, 1993, pp. 243-335. | MR 1240575 | Zbl 0789.35135
and ,[7] Semiclassical Microlocal Analysis and Precise Spectral Asymptotics, École Polytechnique, Preprints, Palaiseau, 1991-1992.
,[8] Estimates for the number of negative eigenvalues of the Schrödinger operator with a strong magnetic field, Soviet Math. Dokl., Vol. 36 (3), 1988, pp. 561-564. | MR 936071 | Zbl 0661.35066
,[9] Estimates for the number of negative eigenvalues of the Schrödinger operator with singular potentials, Proc. Int. Congr. Math. Berkeley, 1986, pp. 1084-1093. | MR 922080 | Zbl 0719.47031
,[10] Quantum Mechanics - Nonrelativistic Theory, Pergamon Press, New York, 1965. | Zbl 0178.57901
and ,[11] The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math., Vol. 23, 1977, pp. 22-116. | MR 428944 | Zbl 0938.81568
and ,[12] Heavy atoms in the strong magnetic field of a neutron star, Phys. Rev. Letters, Vol. 69, 1992, pp. 749-752.
, and ,[13] Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions, Comm. Pure and Appl. Math. (to appear). | MR 1272387 | Zbl 0800.49041
, and ,[14] Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions, Comm. Math. Phys., Vol. 161, 1994, pp. 77-124. | MR 1266071 | Zbl 0807.47058
, and ,[15] Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York, 1979. | Zbl 0405.47007
and ,[16] Autour de l'Approximation Semiclassique, Birkhäuser, Boston, 1987. | Zbl 0621.35001
,[17] Lectures on Trace Ideals Methods, Cambridge University Press, London, 1979. | MR 541149
,[18] The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J., Vol. 74 (2), 1994, pp. 319-429. | MR 1272980 | Zbl 0824.35151
,[19] The sum of eigenvalues for the Schrödinger operator with Coulomb singularities in a homogeneous magnetic field, University of Nantes Preprint, 1993.
,